BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 28941234)

  • 21. One-step fabrication of polymeric Janus nanoparticles for drug delivery.
    Xie H; She ZG; Wang S; Sharma G; Smith JW
    Langmuir; 2012 Mar; 28(9):4459-63. PubMed ID: 22251479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery.
    Errico C; Bartoli C; Chiellini F; Chiellini E
    J Biomed Biotechnol; 2009; 2009():571702. PubMed ID: 19789653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Rapamycin-loaded poly (lactic-co-glycolic) acid nanoparticles for intraarterial local drug delivery: preparation, characterization, and in vitro/in vivo release].
    Miao LF; Yang J; Huang CL; Song CX; Zeng YJ; Chen LF; Zhu WL
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2008 Aug; 30(4):491-7. PubMed ID: 18795627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of Histone Deacetylase Inhibitor Vorinostat-Loaded Poly D, L-Lactide-co-Glycolide Polymeric Nanoparticles by Nanoprecipitation Method.
    Ravikumar V; Sankar R
    Methods Mol Biol; 2017; 1510():399-403. PubMed ID: 27761838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of Lurasidone HCl-Loaded PLGA Nanoparticles for Intramuscular Delivery: Enhanced Bioavailability, Reduced Dosing Frequency, Pharmacokinetics, and Therapeutic Outcomes.
    Macwan N; Patel HS; Sharma RK; Jain N; Tandel H
    Assay Drug Dev Technol; 2024; 22(2):53-62. PubMed ID: 38150562
    [No Abstract]   [Full Text] [Related]  

  • 26. Cell Line and Augument Cellular Uptake Study of Statistically Optimized Sustained Release Capecitabine Loaded Eudragit S100/PLGA(poly(lacticco- glycolic acid)) Nanoparticles for Colon Targeting.
    Pandey S; Vijayendra Swamy SM; Ubaid Ulla UM; Gupta A; Patel H; Yadav JS
    Curr Drug Deliv; 2017 Sep; 14(6):887-899. PubMed ID: 27538461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin.
    Lee H; Ahn CH; Park TG
    Macromol Biosci; 2009 Apr; 9(4):336-42. PubMed ID: 19006195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS.
    McCall RL; Sirianni RW
    J Vis Exp; 2013 Dec; (82):51015. PubMed ID: 24429733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.
    Liu R; Wang Y; Li X; Bao W; Xia G; Chen W; Cheng J; Xu Y; Guo L; Chen B
    Drug Des Devel Ther; 2015; 9():2705-19. PubMed ID: 26045659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of polymeric carriers for drug delivery with different shape and size using an electric jet.
    Enayati M; Ahmad Z; Stride E; Edirisinghe M
    Curr Pharm Biotechnol; 2009 Sep; 10(6):600-8. PubMed ID: 19619122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method.
    Barichello JM; Morishita M; Takayama K; Nagai T
    Drug Dev Ind Pharm; 1999 Apr; 25(4):471-6. PubMed ID: 10194602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of Flow Focusing® technology to produce tobramycin-loaded PLGA microparticles for pulmonary drug delivery.
    Martín-Banderas L; Holgado MA; Álvarez-Fuentes J; Fernández-Arévalo M
    Med Chem; 2012 Jul; 8(4):533-40. PubMed ID: 22571192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles.
    Sharma D; Sharma RK; Sharma N; Gabrani R; Sharma SK; Ali J; Dang S
    AAPS PharmSciTech; 2015 Oct; 16(5):1108-21. PubMed ID: 25698083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyrene™ as an Alternative Sustainable Solvent for the Preparation of Poly(lactic-co-glycolic acid) Nanoparticles.
    Grune C; Thamm J; Werz O; Fischer D
    J Pharm Sci; 2021 Feb; 110(2):959-964. PubMed ID: 33275992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery.
    Cheng J; Teply BA; Sherifi I; Sung J; Luther G; Gu FX; Levy-Nissenbaum E; Radovic-Moreno AF; Langer R; Farokhzad OC
    Biomaterials; 2007 Feb; 28(5):869-76. PubMed ID: 17055572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Design of Experiment Study of Nanoprecipitation and Nano Spray Drying as Processes to Prepare PLGA Nano- and Microparticles with Defined Sizes and Size Distributions.
    Draheim C; de Crécy F; Hansen S; Collnot EM; Lehr CM
    Pharm Res; 2015 Aug; 32(8):2609-24. PubMed ID: 25676594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucosylated polymeric nanoparticles: a sweetened approach against blood compatibility paradox.
    Thasneem YM; Sajeesh S; Sharma CP
    Colloids Surf B Biointerfaces; 2013 Aug; 108():337-44. PubMed ID: 23563302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and optimization of N-Acetylcysteine-loaded poly (lactic-co-glycolic acid) nanoparticles by electrospray.
    Karimi Zarchi AA; Abbasi S; Faramarzi MA; Gilani K; Ghazi-Khansari M; Amani A
    Int J Biol Macromol; 2015 Jan; 72():764-70. PubMed ID: 25224287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface functionality as a means to impact polymer nanoparticle size and structure.
    Schneider J; Jallouk AP; Vasquez D; Thomann R; Forget A; Pino CJ; Shastri VP
    Langmuir; 2013 Mar; 29(12):4092-5. PubMed ID: 23438034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.