BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 28941328)

  • 1. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia.
    Modares Sadeghi M; Shariati L; Hejazi Z; Shahbazi M; Tabatabaiefar MA; Khanahmad H
    J Cell Biochem; 2018 Mar; 119(3):2512-2519. PubMed ID: 28941328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivation of γ-globin expression using a minicircle DNA system to treat β-thalassemia.
    Ma SP; Gao XX; Zhou GQ; Zhang HK; Yang JM; Wang WJ; Song XM; Chen HY; Lu DR
    Gene; 2022 Apr; 820():146289. PubMed ID: 35143940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional silencing of fetal hemoglobin expression by NonO.
    Li X; Chen M; Liu B; Lu P; Lv X; Zhao X; Cui S; Xu P; Nakamura Y; Kurita R; Chen B; Huang DCS; Liu DP; Liu M; Zhao Q
    Nucleic Acids Res; 2021 Sep; 49(17):9711-9723. PubMed ID: 34379783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo.
    Psatha N; Georgakopoulou A; Li C; Nandakumar V; Georgolopoulos G; Acosta R; Paschoudi K; Nelson J; Chee D; Athanasiadou A; Kouvatsi A; Funnell APW; Lieber A; Yannaki E; Papayannopoulou T
    Blood; 2021 Oct; 138(17):1540-1553. PubMed ID: 34086867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ginsenoside Rg1 promotes fetal hemoglobin production in vitro: A potential therapeutic avenue for β-thalassemia.
    Cai DL; Chan Y; Kong YM; Liu YZ; Guo Y; Cai AQ; Zhu BS
    Eur J Pharmacol; 2024 Apr; 968():176404. PubMed ID: 38382804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecule therapeutics to treat the β-globinopathies.
    Yu L; Myers G; Engel JD
    Curr Opin Hematol; 2020 May; 27(3):129-140. PubMed ID: 32167945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations.
    Li Y; Zaheri S; Nguyen K; Liu L; Hassanipour F; Pace BS; Bleris L
    Sci Rep; 2022 Jan; 12(1):1481. PubMed ID: 35087158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia.
    Wang H; Georgakopoulou A; Psatha N; Li C; Capsali C; Samal HB; Anagnostopoulos A; Ehrhardt A; Izsvák Z; Papayannopoulou T; Yannaki E; Lieber A
    J Clin Invest; 2019 Feb; 129(2):598-615. PubMed ID: 30422819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy and Gene Editing for β-Thalassemia.
    Christakopoulos GE; Telange R; Yen J; Weiss MJ
    Hematol Oncol Clin North Am; 2023 Apr; 37(2):433-447. PubMed ID: 36907613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. α-globin Alteration in α-thalassemia Disorder: Prediction and Interaction Defect.
    Handayani NSN; Husna N; Sanka I
    Pak J Biol Sci; 2017; 20(7):343-349. PubMed ID: 29023066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of α-thalassemia.
    Farashi S; Harteveld CL
    Blood Cells Mol Dis; 2018 May; 70():43-53. PubMed ID: 29032940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central sensitization associated with low fetal hemoglobin levels in adults with sickle cell anemia.
    Darbari DS; Vaughan KJ; Roskom K; Seamon C; Diaw L; Quinn M; Conrey A; Schechter AN; Haythornthwaite JA; Waclawiw MA; Wallen GR; Belfer I; Taylor JG
    Scand J Pain; 2017 Oct; 17():279-286. PubMed ID: 28969994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Thalassemia gene editing therapy: Advancements and difficulties.
    Hu J; Zhong Y; Xu P; Xin L; Zhu X; Jiang X; Gao W; Yang B; Chen Y
    Medicine (Baltimore); 2024 May; 103(18):e38036. PubMed ID: 38701251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies.
    Paschoudi K; Yannaki E; Psatha N
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Editing-Based Technologies for
    Rahimmanesh I; Boshtam M; Kouhpayeh S; Khanahmad H; Dabiri A; Ahangarzadeh S; Esmaeili Y; Bidram E; Vaseghi G; Haghjooy Javanmard S; Shariati L; Zarrabi A; Varma RS
    Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through.
    Gurumoorthy N; Nordin F; Tye GJ; Wan Kamarul Zaman WS; Ng MH
    Biomedicines; 2022 Jan; 10(1):. PubMed ID: 35052787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Insights and Potential Modifiers as Therapeutic Targets in
    Zakaria NA; Islam MA; Abdullah WZ; Bahar R; Mohamed Yusoff AA; Abdul Wahab R; Shamsuddin S; Johan MF
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34070036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotherapy and Gene Therapy for Oncoviruses Infections: A Review.
    de Almeida NAA; Ribeiro CRA; Raposo JV; de Paula VS
    Viruses; 2021 May; 13(5):. PubMed ID: 34063186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging roles of Sox6 in the renal and cardiovascular system.
    Saleem M; Barturen-Larrea P; Gomez JA
    Physiol Rep; 2020 Nov; 8(22):e14604. PubMed ID: 33230925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleic Acid Therapy for β-Thalassemia.
    d'Arqom A
    Biologics; 2020; 14():95-105. PubMed ID: 32982166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.