BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 28941596)

  • 1. Robust suppression of cardiac energy catabolism with marked accumulation of energy substrates during lipopolysaccharide-induced cardiac dysfunction in mice.
    Umbarawan Y; Syamsunarno MRAA; Obinata H; Yamaguchi A; Sunaga H; Matsui H; Hishiki T; Matsuura T; Koitabashi N; Obokata M; Hanaoka H; Haque A; Kunimoto F; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Metabolism; 2017 Dec; 77():47-57. PubMed ID: 28941596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle.
    Iso T; Maeda K; Hanaoka H; Suga T; Goto K; Syamsunarno MR; Hishiki T; Nagahata Y; Matsui H; Arai M; Yamaguchi A; Abumrad NA; Sano M; Suematsu M; Endo K; Hotamisligil GS; Kurabayashi M
    Arterioscler Thromb Vasc Biol; 2013 Nov; 33(11):2549-57. PubMed ID: 23968980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced fatty acid uptake aggravates cardiac contractile dysfunction in streptozotocin-induced diabetic cardiomyopathy.
    Umbarawan Y; Kawakami R; Syamsunarno MRAA; Koitabashi N; Obinata H; Yamaguchi A; Hanaoka H; Hishiki T; Hayakawa N; Sunaga H; Matsui H; Kurabayashi M; Iso T
    Sci Rep; 2020 Nov; 10(1):20809. PubMed ID: 33257783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial energy provision is preserved by increased utilization of glucose and ketone bodies in CD36 knockout mice.
    Nakatani K; Watabe T; Masuda D; Imaizumi M; Shimosegawa E; Kobayashi T; Sairyo M; Zhu Y; Okada T; Kawase R; Nakaoka H; Naito A; Ohama T; Koseki M; Oka T; Akazawa H; Nishida M; Komuro I; Sakata Y; Hatazawa J; Yamashita S
    Metabolism; 2015 Sep; 64(9):1165-74. PubMed ID: 26130608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise endurance capacity is markedly reduced due to impaired energy homeostasis during prolonged fasting in FABP4/5 deficient mice.
    Iso T; Haruyama H; Sunaga H; Matsui M; Matsui H; Tanaka R; Umbarawan Y; Syamsunarno MRAA; Yokoyama T; Kurabayashi M
    BMC Physiol; 2019 Mar; 19(1):1. PubMed ID: 30866899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid binding protein 4 and 5 play a crucial role in thermogenesis under the conditions of fasting and cold stress.
    Syamsunarno MR; Iso T; Yamaguchi A; Hanaoka H; Putri M; Obokata M; Sunaga H; Koitabashi N; Matsui H; Maeda K; Endo K; Tsushima Y; Yokoyama T; Kurabayashi M
    PLoS One; 2014; 9(6):e90825. PubMed ID: 24603714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting.
    Syamsunarno MR; Iso T; Hanaoka H; Yamaguchi A; Obokata M; Koitabashi N; Goto K; Hishiki T; Nagahata Y; Matsui H; Sano M; Kobayashi M; Kikuchi O; Sasaki T; Maeda K; Murakami M; Kitamura T; Suematsu M; Tsushima Y; Endo K; Hotamisligil GS; Kurabayashi M
    PLoS One; 2013; 8(11):e79386. PubMed ID: 24244493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Barth syndrome-related cardiomyopathy is associated with a reduction in myocardial glucose oxidation.
    Greenwell AA; Gopal K; Altamimi TR; Saed CT; Wang F; Tabatabaei Dakhili SA; Ho KL; Zhang L; Eaton F; Kruger J; Al Batran R; Lopaschuk GD; Oudit GY; Ussher JR
    Am J Physiol Heart Circ Physiol; 2021 Jun; 320(6):H2255-H2269. PubMed ID: 33929899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hormone-sensitive lipase disruption on cardiac energy metabolism in response to fasting and refeeding.
    Suzuki J; Ueno M; Uno M; Hirose Y; Zenimaru Y; Takahashi S; Osuga J; Ishibashi S; Takahashi M; Hirose M; Yamada M; Kraemer FB; Miyamori I
    Am J Physiol Endocrinol Metab; 2009 Nov; 297(5):E1115-24. PubMed ID: 19706782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection against lipopolysaccharide-induced myocardial dysfunction in mice by cardiac-specific expression of soluble Fas.
    Niu J; Azfer A; Kolattukudy PE
    J Mol Cell Cardiol; 2008 Jan; 44(1):160-9. PubMed ID: 17996250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-Rich Saline Attenuates Lipopolysaccharide-Induced Heart Dysfunction by Restoring Fatty Acid Oxidation in Rats by Mitigating C-Jun N-Terminal Kinase Activation.
    Tao B; Liu L; Wang N; Tong D; Wang W; Zhang J
    Shock; 2015 Dec; 44(6):593-600. PubMed ID: 26565704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heart is better protected against myocardial infarction in the fed state compared to the fasted state.
    Liepinsh E; Makrecka M; Kuka J; Makarova E; Vilskersts R; Cirule H; Sevostjanovs E; Grinberga S; Pugovics O; Dambrova M
    Metabolism; 2014 Jan; 63(1):127-36. PubMed ID: 24140100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac-specific expression of heat shock protein 27 attenuated endotoxin-induced cardiac dysfunction and mortality in mice through a PI3K/Akt-dependent mechanism.
    You W; Min X; Zhang X; Qian B; Pang S; Ding Z; Li C; Gao X; Di R; Cheng Y; Liu L
    Shock; 2009 Jul; 32(1):108-17. PubMed ID: 19106822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart.
    Kadir AA; Stubbs BJ; Chong CR; Lee H; Cole M; Carr C; Hauton D; McCullagh J; Evans RD; Clarke K
    J Physiol; 2023 Apr; 601(7):1207-1224. PubMed ID: 36799478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced heart size and increased myocardial fuel substrate oxidation in ACC2 mutant mice.
    Essop MF; Camp HS; Choi CS; Sharma S; Fryer RM; Reinhart GA; Guthrie PH; Bentebibel A; Gu Z; Shulman GI; Taegtmeyer H; Wakil SJ; Abu-Elheiga L
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H256-65. PubMed ID: 18487439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Glucose Availability Attenuates Myocardial Ketone Body Utilization.
    Brahma MK; Ha CM; Pepin ME; Mia S; Sun Z; Chatham JC; Habegger KM; Abel ED; Paterson AJ; Young ME; Wende AR
    J Am Heart Assoc; 2020 Aug; 9(15):e013039. PubMed ID: 32750298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β
    Kawaguchi S; Okada M; Ijiri E; Koga D; Watanabe T; Hayashi K; Kashiwagi Y; Fujita S; Hasebe N
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H283-H294. PubMed ID: 31834837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice.
    Cortassa S; Caceres V; Tocchetti CG; Bernier M; de Cabo R; Paolocci N; Sollott SJ; Aon MA
    J Physiol; 2020 Apr; 598(7):1393-1415. PubMed ID: 30462352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2.
    Wang H; Bei Y; Shen S; Huang P; Shi J; Zhang J; Sun Q; Chen Y; Yang Y; Xu T; Kong X; Xiao J
    J Mol Cell Cardiol; 2016 May; 94():43-53. PubMed ID: 27033308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.