These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28941837)

  • 41. Exploring the potential of anaerobic sulfate reduction process in treating sulfonated diazo dye: Microbial community analysis using bar-coded pyrosequencing.
    Rasool K; Shahzad A; Lee DS
    J Hazard Mater; 2016 Nov; 318():641-649. PubMed ID: 27475462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 degrees C) and thermophilic (55 degrees C) treatments for decolourisation of textile wastewaters.
    dos Santos AB; Bisschops IA; Cervantes FJ; van Lier JB
    Chemosphere; 2004 Jun; 55(9):1149-57. PubMed ID: 15081755
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye.
    Paździor K; Klepacz-Smółka A; Ledakowicz S; Sójka-Ledakowicz J; Mrozińska Z; Zyłła R
    Chemosphere; 2009 Apr; 75(2):250-5. PubMed ID: 19155044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.
    Enayatzamir K; Alikhani HA; Yakhchali B; Tabandeh F; Rodríguez-Couto S
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):145-53. PubMed ID: 19259719
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system.
    Cui MH; Cui D; Gao L; Wang AJ; Cheng HY
    Chemosphere; 2017 Feb; 169():18-22. PubMed ID: 27855327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production.
    Yu L; Li WW; Lam MH; Yu HQ; Wu C
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):255-62. PubMed ID: 22086069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain.
    Chang JS; Lin YC
    Biotechnol Prog; 2000; 16(6):979-85. PubMed ID: 11101324
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.
    Yan LKQ; Fung KY; Ng KM
    Environ Technol; 2018 Jun; 39(11):1368-1375. PubMed ID: 28488938
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The microbial degradation of azo dyes: minireview.
    Chengalroyen MD; Dabbs ER
    World J Microbiol Biotechnol; 2013 Mar; 29(3):389-99. PubMed ID: 23108664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes.
    van der Zee FP; Bisschops IA; Lettinga G; Field JA
    Environ Sci Technol; 2003 Jan; 37(2):402-8. PubMed ID: 12564915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial decolorization of azo dyes by Proteus mirabilis.
    Chen KC; Huang WT; Wu JY; Houng JY
    J Ind Microbiol Biotechnol; 1999 Jul; 23(1):686-90. PubMed ID: 10455502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES).
    Cui D; Cui MH; Liang B; Liu WZ; Tang ZE; Wang AJ
    Chemosphere; 2020 Jan; 239():124787. PubMed ID: 31526987
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Riboflavin as a redox mediator accelerating the reduction of the azo dye mordant yellow 10 by anaerobic granular sludge.
    Field JA; Brady J
    Water Sci Technol; 2003; 48(6):187-93. PubMed ID: 14640217
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decolorization of orange II using an anaerobic sequencing batch reactor with and without co-substrates.
    Ong SA; Toorisaka E; Hirata M; Hano T
    J Environ Sci (China); 2012; 24(2):291-6. PubMed ID: 22655390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells.
    Miran W; Jang J; Nawaz M; Shahzad A; Lee DS
    J Hazard Mater; 2018 Jun; 352():70-79. PubMed ID: 29573731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon system (A/A BAC).
    Pasukphun N; Vinitnantharat S; Gheewala S
    Pak J Biol Sci; 2010 Apr; 13(7):316-24. PubMed ID: 20836286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decolorization and biodegradation of dye wastewaters by a facultative-aerobic process.
    Li Y; Xi DL
    Environ Sci Pollut Res Int; 2004; 11(6):372-7. PubMed ID: 15603526
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor.
    Balapure K; Bhatt N; Madamwar D
    Bioresour Technol; 2015 Jan; 175():1-7. PubMed ID: 25459797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal.
    García-Montaño J; Domènech X; García-Hortal JA; Torrades F; Peral J
    J Hazard Mater; 2008 Jun; 154(1-3):484-90. PubMed ID: 18053640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.
    Fernando E; Keshavarz T; Kyazze G; Fonseka K
    Environ Technol; 2016; 37(2):255-64. PubMed ID: 26212183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.