These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28941913)

  • 1. Sea salts as a potential source of food spoilage fungi.
    Biango-Daniels MN; Hodge KT
    Food Microbiol; 2018 Feb; 69():89-95. PubMed ID: 28941913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of spoilage fungi associated with various French dairy products.
    Garnier L; Valence F; Pawtowski A; Auhustsinava-Galerne L; Frotté N; Baroncelli R; Deniel F; Coton E; Mounier J
    Int J Food Microbiol; 2017 Jan; 241():191-197. PubMed ID: 27794247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mycobiota of the salterns.
    Zajc J; Zalar P; Plemenitaš A; Gunde-Cimerman N
    Prog Mol Subcell Biol; 2012; 53():133-58. PubMed ID: 22222830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of fungal genera from spoiled processed foods with physicochemical food properties and processing conditions.
    Snyder AB; Churey JJ; Worobo RW
    Food Microbiol; 2019 Oct; 83():211-218. PubMed ID: 31202415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungi in salterns.
    Chung D; Kim H; Choi HS
    J Microbiol; 2019 Sep; 57(9):717-724. PubMed ID: 31452042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal Diversity in Intertidal Mudflats and Abandoned Solar Salterns as a Source for Biological Resources.
    Heo YM; Lee H; Kim K; Kwon SL; Park MY; Kang JE; Kim GH; Kim BS; Kim JJ
    Mar Drugs; 2019 Oct; 17(11):. PubMed ID: 31652878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal spoilage of bottled mineral water.
    Cabral D; Fernández P
    Int J Food Microbiol; 2002 Jan; 72(1-2):73-6. PubMed ID: 11843415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal life in the dead sea.
    Oren A; Gunde-Cimerman N
    Prog Mol Subcell Biol; 2012; 53():115-32. PubMed ID: 22222829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salting of dry-cured meat - A potential cause of contamination with the ochratoxin A-producing species Penicillium nordicum.
    Sonjak S; Ličen M; Frisvad JC; Gunde-Cimerman N
    Food Microbiol; 2011 Sep; 28(6):1111-6. PubMed ID: 21645808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fungal diversity and enzyme activities in marine sediments in the South China sea].
    Qu J; Kaihui L; Ding X; Deng B; Chen W; Guo Q; Tian X; Zhang S; Li W
    Wei Sheng Wu Xue Bao; 2014 May; 54(5):552-62. PubMed ID: 25199254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing fungal communities in medicinal and edible Cassiae Semen using high-throughput sequencing.
    Guo M; Jiang W; Yang M; Dou X; Pang X
    Int J Food Microbiol; 2020 Apr; 319():108496. PubMed ID: 31911209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula.
    Gonçalves VN; Vitoreli GA; de Menezes GCA; Mendes CRB; Secchi ER; Rosa CA; Rosa LH
    Extremophiles; 2017 Nov; 21(6):1005-1015. PubMed ID: 28856503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques.
    Cantrell SA; Casillas-Martínez L; Molina M
    Mycol Res; 2006 Aug; 110(Pt 8):962-70. PubMed ID: 16904880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: a review.
    Sahgal N; Needham R; Cabañes FJ; Magan N
    Food Addit Contam; 2007 Oct; 24(10):1161-8. PubMed ID: 17886189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia.
    Butinar L; Frisvad JC; Gunde-Cimerman N
    FEMS Microbiol Ecol; 2011 Jul; 77(1):186-99. PubMed ID: 21477006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of cultivable fungal communities in deep coal-bearing sediments from ∼1.3 to 2.5 km below the ocean floor.
    Liu CH; Huang X; Xie TN; Duan N; Xue YR; Zhao TX; Lever MA; Hinrichs KU; Inagaki F
    Environ Microbiol; 2017 Feb; 19(2):803-818. PubMed ID: 28028923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycotoxigenic moulds and mycotoxins in flours consumed in Turkey.
    Demirel R; Sariozlu NY
    J Sci Food Agric; 2014 Jun; 94(8):1577-84. PubMed ID: 24166184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mould spoilage of foods and beverages: Using the right methodology.
    Rico-Munoz E; Samson RA; Houbraken J
    Food Microbiol; 2019 Aug; 81():51-62. PubMed ID: 30910088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of Filamentous Fungi Associated with Dairy Processing Environments and Spoiled Products in Brazil.
    Souza LV; Rodrigues RDS; Fusieger A; da Silva RR; de Jesus Silva SR; Martins E; Machado SG; Caggia C; Randazzo CL; de Carvalho AF
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival of filamentous fungi in hypersaline Dead Sea water.
    Kis-Papo T; Oren A; Wasser SP; Nevo E
    Microb Ecol; 2003 Feb; 45(2):183-90. PubMed ID: 12545316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.