These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 28942014)
21. Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications. Massolini G; Calleri E J Sep Sci; 2005 Jan; 28(1):7-21. PubMed ID: 15688626 [TBL] [Abstract][Full Text] [Related]
22. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis. Naldi M; Černigoj U; Štrancar A; Bartolini M Talanta; 2017 May; 167():143-157. PubMed ID: 28340705 [TBL] [Abstract][Full Text] [Related]
23. A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies. Jiang S; Zhang Z; Li L J Chromatogr A; 2015 Sep; 1412():75-81. PubMed ID: 26300481 [TBL] [Abstract][Full Text] [Related]
24. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies. Krenkova J; Lacher NA; Svec F Anal Chem; 2009 Mar; 81(5):2004-12. PubMed ID: 19186936 [TBL] [Abstract][Full Text] [Related]
25. Development of a bioreactor based on trypsin immobilized on monolithic support for the on-line digestion and identification of proteins. Calleri E; Temporini C; Perani E; Stella C; Rudaz S; Lubda D; Mellerio G; Veuthey JL; Caccialanza G; Massolini G J Chromatogr A; 2004 Aug; 1045(1-2):99-109. PubMed ID: 15378884 [TBL] [Abstract][Full Text] [Related]
26. Microscale immobilized protease reactor columns for peptide mapping by liquid chromatography/mass spectral analyses. Davis MT; Lee TD; Ronk M; Hefta SA Anal Biochem; 1995 Jan; 224(1):235-44. PubMed ID: 7710077 [TBL] [Abstract][Full Text] [Related]
27. Development of continuous microwave-assisted protein digestion with immobilized enzyme. Chen Z; Li Y; Lin S; Wei M; Du F; Ruan G Biochem Biophys Res Commun; 2014 Mar; 445(2):491-6. PubMed ID: 24530398 [TBL] [Abstract][Full Text] [Related]
28. An aptamer-based trypsin reactor for on-line protein digestion with electrospray ionization tandem mass spectrometry. Xiao P; Lv X; Wang S; Iqbal J; Qing H; Li Q; Deng Y Anal Biochem; 2013 Oct; 441(2):123-32. PubMed ID: 23831476 [TBL] [Abstract][Full Text] [Related]
29. Rapid protein identification using monolithic enzymatic microreactor and LC-ESI-MS/MS. Duan J; Liang Z; Yang C; Zhang J; Zhang L; Zhang W; Zhang Y Proteomics; 2006 Jan; 6(2):412-9. PubMed ID: 16342240 [TBL] [Abstract][Full Text] [Related]
30. Analytical characterization of a facile porous polymer monolithic trypsin microreactor enabling peptide mass mapping using mass spectrometry. Palm AK; Novotny MV Rapid Commun Mass Spectrom; 2004; 18(12):1374-82. PubMed ID: 15174194 [TBL] [Abstract][Full Text] [Related]
31. High-throughput protein digestion by trypsin-immobilized monolithic silica with pipette-tip formula. Ota S; Miyazaki S; Matsuoka H; Morisato K; Shintani Y; Nakanishi K J Biochem Biophys Methods; 2007 Feb; 70(1):57-62. PubMed ID: 17118458 [TBL] [Abstract][Full Text] [Related]
32. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry. Spross J; Sinz A Anal Chem; 2010 Feb; 82(4):1434-43. PubMed ID: 20099804 [TBL] [Abstract][Full Text] [Related]
33. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis. Wang S; Chen Z; Yang P; Chen G Proteomics; 2008 May; 8(9):1785-8. PubMed ID: 18442168 [TBL] [Abstract][Full Text] [Related]
34. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping. Fan H; Yao F; Xu S; Chen G Talanta; 2013 Dec; 117():119-26. PubMed ID: 24209319 [TBL] [Abstract][Full Text] [Related]
35. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Liu T; Wang S; Chen G Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of an on-target sample preparation system for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in conjunction with normal-flow peptide high-performance liquid chromatography for peptide mass fingerprint analyses. McComb ME; Perlman DH; Huang H; Costello CE Rapid Commun Mass Spectrom; 2007; 21(1):44-58. PubMed ID: 17133622 [TBL] [Abstract][Full Text] [Related]
37. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research. Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420 [TBL] [Abstract][Full Text] [Related]
38. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion. Yuan H; Zhang L; Zhang Y J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586 [TBL] [Abstract][Full Text] [Related]
39. Fabrication of an on-line enzyme micro-reactor coupled to liquid chromatography-tandem mass spectrometry for the digestion of recombinant human erythropoietin. Foo HC; Smith NW; Stanley SM Talanta; 2015 Apr; 135():18-22. PubMed ID: 25640120 [TBL] [Abstract][Full Text] [Related]
40. Achieving efficient digestion faster with Flash Digest: potential alternative to multi-step detergent assisted in-solution digestion in quantitative proteomics experiments. Shah V; Lassman ME; Chen Y; Zhou H; Laterza OF Rapid Commun Mass Spectrom; 2017 Jan; 31(2):193-199. PubMed ID: 27794205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]