These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28942170)

  • 1. Core-shell structured mZVI/Ca(OH)
    Wei CJ; Wang XM; Li XY
    J Colloid Interface Sci; 2018 Jan; 510():199-206. PubMed ID: 28942170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium hydroxide coating on highly reactive nanoscale zero-valent iron for in situ remediation application.
    Wei CJ; Xie YF; Wang XM; Li XY
    Chemosphere; 2018 Sep; 207():715-724. PubMed ID: 29859484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.
    Lee H; Lee HJ; Kim HE; Kweon J; Lee BD; Lee C
    J Hazard Mater; 2014 Jan; 265():201-7. PubMed ID: 24361799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media.
    Wei CJ; Li XY
    Water Sci Technol; 2013; 68(10):2287-93. PubMed ID: 24292480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solution pH on aging dynamics and surface structural evolution of mZVI particles: H
    Tang F; Xin J; Zheng X; Zheng T; Yuan X; Kolditz O
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23538-23548. PubMed ID: 28852962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism.
    Gu Y; Gong L; Qi J; Cai S; Tu W; He F
    Water Res; 2019 Aug; 159():233-241. PubMed ID: 31100577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation.
    Xin J; Tang F; Zheng X; Shao H; Kolditz O; Lu X
    Water Res; 2016 Sep; 100():80-87. PubMed ID: 27179595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media.
    Xin J; Tang F; Zheng X; Shao H; Kolditz O
    Water Res; 2016 Jan; 88():199-206. PubMed ID: 26497937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced phycocyanin and DON removal by the synergism of H
    Chen DW; Liu C; Lu J; Mehmood T; Ren YY
    Sci Total Environ; 2020 Oct; 738():140134. PubMed ID: 32806387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns.
    Zhang P; Song D; XuejingXu ; Hao Y; Shang X; Wang C; Tang J; Sun H
    Chemosphere; 2021 Oct; 281():130760. PubMed ID: 33992847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing nitrate removal efficiency of micro-sized zero-valent iron by chitosan gel balls encapsulating.
    An F; Feng X; Dang Y; Sun D
    Sci Total Environ; 2022 Jun; 823():153641. PubMed ID: 35131244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warrior's armor: Study on the aging of sulfidated micro-sized zero valent iron in air and its subsequent reactivity for chloramphenicol degradation in different acid systems.
    Xiu Q; Zhao S; Yang X; Sun S; Dai Y; Duan L; He L; He M; Song C; Wang S
    Chemosphere; 2021 Dec; 285():131422. PubMed ID: 34242984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-passivation ability of sulfidated microscale zero valent iron and its application for 1,1,2,2-tetrachloroethane degradation.
    Fan B; Li X; Zhu F; Wang J; Gong Z; Shao S; Wang X; Zhu C; Zhou D; Gao S
    J Hazard Mater; 2023 Feb; 443(Pt A):130194. PubMed ID: 36270192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Aerobic Inactivation and Facile Removal of Escherichia coli with Amorphous Zero-Valent Iron Microspheres: Indispensable Roles of Reactive Oxygen Species and Iron Corrosion Products.
    Sun H; Wang J; Jiang Y; Shen W; Jia F; Wang S; Liao X; Zhang L
    Environ Sci Technol; 2019 Apr; 53(7):3707-3717. PubMed ID: 30817131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of zeolite-supported microscale zero-valent iron as a potential adsorbent for Cd
    Kong X; Huang G; Han Z; Xu Y; Zhu M; Zhang Z
    Environ Sci Pollut Res Int; 2017 May; 24(15):13837-13844. PubMed ID: 28409428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.
    Liang L; Yang W; Guan X; Li J; Xu Z; Wu J; Huang Y; Zhang X
    Water Res; 2013 Oct; 47(15):5846-55. PubMed ID: 23899877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants.
    Ma J; He D; Collins RN; He C; Waite TD
    Water Res; 2016 Nov; 105():331-340. PubMed ID: 27639342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.
    Velimirovic M; Carniato L; Simons Q; Schoups G; Seuntjens P; Bastiaens L
    J Hazard Mater; 2014 Apr; 270():18-26. PubMed ID: 24525160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero valent iron.
    Jiang X; Qiao J; Lo IM; Wang L; Guan X; Lu Z; Zhou G; Xu C
    J Hazard Mater; 2015; 283():880-7. PubMed ID: 25464332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bi/mZVI Combined with Citric Acid and Sodium Citrate to Mineralize Multiple Sulfa Antibiotics: Performance and Mechanism.
    Su X; Lv H; Gong J; Zhou M
    Antibiotics (Basel); 2022 Jan; 11(1):. PubMed ID: 35052928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.