BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28942352)

  • 1. MYO18A: An unusual myosin.
    Buschman MD; Field SJ
    Adv Biol Regul; 2018 Jan; 67():84-92. PubMed ID: 28942352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration.
    Hsu RM; Tsai MH; Hsieh YJ; Lyu PC; Yu JS
    Mol Biol Cell; 2010 Jan; 21(2):287-301. PubMed ID: 19923322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity.
    Cao JM; Cheng XN; Li SQ; Heller S; Xu ZG; Shi DL
    Sci Rep; 2016 Nov; 6():36768. PubMed ID: 27824130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Golgi Forward Trafficking Requires GOLPH3-Driven, PI4P-Dependent Membrane Curvature.
    Rahajeng J; Kuna RS; Makowski SL; Tran TTT; Buschman MD; Li S; Cheng N; Ng MM; Field SJ
    Dev Cell; 2019 Sep; 50(5):573-585.e5. PubMed ID: 31231041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GOLPH3L antagonizes GOLPH3 to determine Golgi morphology.
    Ng MM; Dippold HC; Buschman MD; Noakes CJ; Field SJ
    Mol Biol Cell; 2013 Mar; 24(6):796-808. PubMed ID: 23345592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion.
    Bishé B; Syed GH; Field SJ; Siddiqui A
    J Biol Chem; 2012 Aug; 287(33):27637-47. PubMed ID: 22745132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.
    Černohorská M; Sulimenko V; Hájková Z; Sulimenko T; Sládková V; Vinopal S; Dráberová E; Dráber P
    Biochim Biophys Acta; 2016 Jun; 1863(6 Pt A):1282-97. PubMed ID: 27012601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer.
    Kuna RS; Field SJ
    J Lipid Res; 2019 Feb; 60(2):269-275. PubMed ID: 30266835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding.
    Dippold HC; Ng MM; Farber-Katz SE; Lee SK; Kerr ML; Peterman MC; Sim R; Wiharto PA; Galbraith KA; Madhavarapu S; Fuchs GJ; Meerloo T; Farquhar MG; Zhou H; Field SJ
    Cell; 2009 Oct; 139(2):337-51. PubMed ID: 19837035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GOLPH3 drives cell migration by promoting Golgi reorientation and directional trafficking to the leading edge.
    Xing M; Peterman MC; Davis RL; Oegema K; Shiau AK; Field SJ
    Mol Biol Cell; 2016 Dec; 27(24):3828-3840. PubMed ID: 27708138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3.
    Farber-Katz SE; Dippold HC; Buschman MD; Peterman MC; Xing M; Noakes CJ; Tat J; Ng MM; Rahajeng J; Cowan DM; Fuchs GJ; Zhou H; Field SJ
    Cell; 2014 Jan; 156(3):413-27. PubMed ID: 24485452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Golgi signalling proteins GOLPH3, MYO18A, PITPNC1 and RAB1B: implications in prognosis and survival outcomes of AML patients.
    Ali YO; Radwan SM; Saeed AM; El-Mesallamy HO
    Biomarkers; 2023 Jun; 28(4):387-395. PubMed ID: 36919644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of the extreme carboxyl-terminus of PAK-interacting exchange factor β (βPIX) to myosin 18A (MYO18A) is required for epithelial cell migration.
    Hsu RM; Hsieh YJ; Yang TH; Chiang YC; Kan CY; Lin YT; Chen JT; Yu JS
    Biochim Biophys Acta; 2014 Nov; 1843(11):2513-27. PubMed ID: 25014165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel isoform of myosin 18A (Myo18Aγ) is an essential sarcomeric protein in mouse heart.
    Horsthemke M; Nutter LMJ; Bachg AC; Skryabin BV; Honnert U; Zobel T; Bogdan S; Stoll M; Seidl MD; Müller FU; Ravens U; Unger A; Linke WA; van Gorp PRR; de Vries AAF; Bähler M; Hanley PJ
    J Biol Chem; 2019 May; 294(18):7202-7218. PubMed ID: 30737279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin XVIII.
    Taft MH; Latham SL
    Adv Exp Med Biol; 2020; 1239():421-438. PubMed ID: 32451870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging themes of regulation at the Golgi.
    Makowski SL; Tran TT; Field SJ
    Curr Opin Cell Biol; 2017 Apr; 45():17-23. PubMed ID: 28213314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation.
    Buss F; Kendrick-Jones J; Lionne C; Knight AE; Côté GP; Paul Luzio J
    J Cell Biol; 1998 Dec; 143(6):1535-45. PubMed ID: 9852149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The GOLPH3 pathway regulates Golgi shape and function and is activated by DNA damage.
    Buschman MD; Xing M; Field SJ
    Front Neurosci; 2015; 9():362. PubMed ID: 26500484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Golgi Lipid Signaling Pathway Controls Apical Golgi Distribution and Cell Polarity during Neurogenesis.
    Xie Z; Hur SK; Zhao L; Abrams CS; Bankaitis VA
    Dev Cell; 2018 Mar; 44(6):725-740.e4. PubMed ID: 29587143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-terminal domain of MYO18A has an ATP-insensitive actin-binding site.
    Isogawa Y; Kon T; Inoue T; Ohkura R; Yamakawa H; Ohara O; Sutoh K
    Biochemistry; 2005 Apr; 44(16):6190-6. PubMed ID: 15835906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.