These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1007 related articles for article (PubMed ID: 28942539)
1. Correction of β-thalassemia mutant by base editor in human embryos. Liang P; Ding C; Sun H; Xie X; Xu Y; Zhang X; Sun Y; Xiong Y; Ma W; Liu Y; Wang Y; Fang J; Liu D; Songyang Z; Zhou C; Huang J Protein Cell; 2017 Nov; 8(11):811-822. PubMed ID: 28942539 [TBL] [Abstract][Full Text] [Related]
2. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808 [TBL] [Abstract][Full Text] [Related]
3. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice. Ou Z; Niu X; He W; Chen Y; Song B; Xian Y; Fan D; Tang D; Sun X Sci Rep; 2016 Sep; 6():32463. PubMed ID: 27581487 [TBL] [Abstract][Full Text] [Related]
4. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs. Xu P; Tong Y; Liu XZ; Wang TT; Cheng L; Wang BY; Lv X; Huang Y; Liu DP Sci Rep; 2015 Jul; 5():12065. PubMed ID: 26156589 [TBL] [Abstract][Full Text] [Related]
5. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179 [TBL] [Abstract][Full Text] [Related]
6. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system. Wattanapanitch M; Damkham N; Potirat P; Trakarnsanga K; Janan M; U-Pratya Y; Kheolamai P; Klincumhom N; Issaragrisil S Stem Cell Res Ther; 2018 Feb; 9(1):46. PubMed ID: 29482624 [TBL] [Abstract][Full Text] [Related]
7. Generation of an in vitro model of β-thalassemia using the CRISPR/Cas9 genome editing system. Ajami M; Atashi A; Kaviani S; Kiani J; Soleimani M J Cell Biochem; 2020 Feb; 121(2):1420-1430. PubMed ID: 31596028 [TBL] [Abstract][Full Text] [Related]
8. Efficient gene correction of an aberrant splice site in β-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides. Xiong Z; Xie Y; Yang Y; Xue Y; Wang D; Lin S; Chen D; Lu D; He L; Song B; Yang Y; Sun X J Cell Mol Med; 2019 Dec; 23(12):8046-8057. PubMed ID: 31631510 [TBL] [Abstract][Full Text] [Related]
9. Molecular analysis of β-thalassemia patients: first identification of mutations HBB:c.93-2A>G and HBB:c.114G>A in Brazil. Fernandes AC; Shimmoto MM; Furuzawa GK; Vicari P; Figueiredo MS Hemoglobin; 2011; 35(4):358-66. PubMed ID: 21797703 [TBL] [Abstract][Full Text] [Related]
10. Genome Editing for the β-Hemoglobinopathies. Porteus MH Adv Exp Med Biol; 2017; 1013():203-217. PubMed ID: 29127682 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia. Yang Y; Kang X; Hu S; Chen B; Xie Y; Song B; Zhang Q; Wu H; Ou Z; Xian Y; Fan Y; Li X; Lai L; Sun X J Biol Chem; 2021; 296():100464. PubMed ID: 33639162 [TBL] [Abstract][Full Text] [Related]
12. β+-Thalassemia trait due to a novel mutation in the β-globin gene promoter: -26 (A>C) [HBB c.-76A>C]. Waye JS; Nakamura-Garrett LM; Eng B; Kanavakis E; Traeger-Synodinos J Hemoglobin; 2011; 35(1):84-6. PubMed ID: 21250885 [TBL] [Abstract][Full Text] [Related]
13. Two novel mutations in the 3' untranslated region of the beta-globin gene that are associated with the mild phenotype of beta thalassemia. Bilgen T; Clark OA; Ozturk Z; Akif Yesilipek M; Keser I Int J Lab Hematol; 2013 Feb; 35(1):26-30. PubMed ID: 22862814 [TBL] [Abstract][Full Text] [Related]
14. The molecular characterization of Beta globin gene in thalassemia patients reveals rare and a novel mutations in Pakistani population. Yasmeen H; Toma S; Killeen N; Hasnain S; Foroni L Eur J Med Genet; 2016 Aug; 59(8):355-62. PubMed ID: 27263053 [TBL] [Abstract][Full Text] [Related]
15. Detection of HBB:c.92+5G>C and HBB:c.108delC mutations in β-thalassemia carriers using high-resolution melting analysis. Hidayati NI; Wijayanti N; Handayani NSN Mol Biol Rep; 2020 Jul; 47(7):5665-5671. PubMed ID: 32638316 [TBL] [Abstract][Full Text] [Related]
16. Correction of Hemoglobin E/Beta-Thalassemia Patient-Derived iPSCs Using CRISPR/Cas9. Wattanapanitch M Methods Mol Biol; 2021; 2211():193-211. PubMed ID: 33336279 [TBL] [Abstract][Full Text] [Related]
17. Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology. Li L; Yi H; Liu Z; Long P; Pan T; Huang Y; Li Y; Li Q; Ma Y Stem Cell Res Ther; 2022 Mar; 13(1):102. PubMed ID: 35255977 [TBL] [Abstract][Full Text] [Related]
18. Mutational Profile of Homozygous β-Thalassemia in Rio de Janeiro, Brazil. Carrocini GCS; Venancio LPR; Pessoa VLR; Lobo CLC; Bonini-Domingos CR Hemoglobin; 2017 Jan; 41(1):12-15. PubMed ID: 28366028 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Dever DP; Bak RO; Reinisch A; Camarena J; Washington G; Nicolas CE; Pavel-Dinu M; Saxena N; Wilkens AB; Mantri S; Uchida N; Hendel A; Narla A; Majeti R; Weinberg KI; Porteus MH Nature; 2016 Nov; 539(7629):384-389. PubMed ID: 27820943 [TBL] [Abstract][Full Text] [Related]
20. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Song B; Fan Y; He W; Zhu D; Niu X; Wang D; Ou Z; Luo M; Sun X Stem Cells Dev; 2015 May; 24(9):1053-65. PubMed ID: 25517294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]