BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 28942837)

  • 1. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.
    Liu J; Wang X; Zhang T; Li X
    Microbiol Res; 2017 Dec; 205():118-124. PubMed ID: 28942837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth.
    Simonetti E; Roberts IN; Montecchia MS; Gutierrez-Boem FH; Gomez FM; Ruiz JA
    Microbiol Res; 2018 Jan; 206():50-59. PubMed ID: 29146260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and characterization of broad-spectrum antipathogen activity of novel rhizobacterial isolates and suppression of Fusarium crown and root rot disease of tomato.
    Zhang L; Khabbaz SE; Wang A; Li H; Abbasi PA
    J Appl Microbiol; 2015 Mar; 118(3):685-703. PubMed ID: 25512025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis.
    Haldar S; Sengupta S
    J Basic Microbiol; 2015 Jul; 55(7):922-8. PubMed ID: 25572408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.).
    Esmaeel Q; Jacquard C; Clément C; Sanchez L; Ait Barka E
    World J Microbiol Biotechnol; 2019 Feb; 35(3):40. PubMed ID: 30739227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation, identification and characterization of phenolic acid-degrading bacteria from soil.
    Wang Y; Zhang W; Zhang Z; Wang W; Xu S; He X
    J Appl Microbiol; 2021 Jul; 131(1):208-220. PubMed ID: 33270328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth.
    Han D; Wang L; Luo Y
    Microbiol Res; 2018 Mar; 208():1-11. PubMed ID: 29551207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of Novel Sequence Type of
    Tagele SB; Kim SW; Lee HG; Lee YS
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of Fusarium Wilt Caused by
    Yadav DR; Adhikari M; Kim SW; Kim HS; Lee YS
    J Microbiol Biotechnol; 2021 Sep; 31(9):1241-1255. PubMed ID: 34373438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Screening of Rhizosphere Bacteria from Grasses in East Kavango Region of Namibia for Plant Growth Promoting Characteristics.
    Haiyambo DH; Chimwamurombe PM; Reinhold-Hurek B
    Curr Microbiol; 2015 Nov; 71(5):566-71. PubMed ID: 26254764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant growth promoting bacteria from Crocus sativus rhizosphere.
    Ambardar S; Vakhlu J
    World J Microbiol Biotechnol; 2013 Dec; 29(12):2271-9. PubMed ID: 23749248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microbial distribution and 16S rRNA diversity in the rhizosphere soil of Panax notoginseng].
    Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):205-13. PubMed ID: 25958701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The resistance of peanut to soil-borne pathogens improved by rhizosphere probiotics under calcium treatment.
    Zhang W; Zhang BW; Deng JF; Li L; Yi TY; Hong YY
    BMC Microbiol; 2021 Oct; 21(1):299. PubMed ID: 34715786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity.
    Ali S; Hameed S; Shahid M; Iqbal M; Lazarovits G; Imran A
    Microbiol Res; 2020 Feb; 232():126389. PubMed ID: 31821969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India.
    Sunar K; Dey P; Chakraborty U; Chakraborty B
    J Basic Microbiol; 2015 Jan; 55(1):91-104. PubMed ID: 23996212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil.
    Ci D; Tang Z; Ding H; Cui L; Zhang G; Li S; Dai L; Qin F; Zhang Z; Yang J; Xu Y
    J Microbiol; 2021 Jan; 59(1):51-63. PubMed ID: 33201434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.).
    Pradhan M; Sahoo RK; Pradhan C; Tuteja N; Mohanty S
    Protoplasma; 2017 Nov; 254(6):2225-2236. PubMed ID: 28455550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum.
    Rokhbakhsh-Zamin F; Sachdev D; Kazemi-Pour N; Engineer A; Pardesi KR; Zinjarde S; Dhakephalkar PK; Chopade BA
    J Microbiol Biotechnol; 2011 Jun; 21(6):556-66. PubMed ID: 21715961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria.
    Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS
    Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.