These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 28943240)
21. Heparan sulfate proteoglycans modulate monocyte migration across cerebral endothelium. Floris S; van den Born J; van der Pol SM; Dijkstra CD; De Vries HE J Neuropathol Exp Neurol; 2003 Jul; 62(7):780-90. PubMed ID: 12901703 [TBL] [Abstract][Full Text] [Related]
22. C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Hudson ML; Kinnunen T; Cinar HN; Chisholm AD Dev Biol; 2006 Jun; 294(2):352-65. PubMed ID: 16677626 [TBL] [Abstract][Full Text] [Related]
23. LncRNA FTX Involves in the Nogo-66-Induced Inhibition of Neurite Outgrowth Through Regulating PDK1/PKB/GSK-3β Pathway. Zuo Y; Sun H; Song L; Hu Y; Guo F Cell Mol Neurobiol; 2020 Oct; 40(7):1143-1153. PubMed ID: 32107749 [TBL] [Abstract][Full Text] [Related]
24. Characterization of proteoglycans synthesized by murine embryonal carcinoma cells (P19) reveals increased expression of perlecan (heparan sulfate proteoglycan) during neuronal differentiation. Sekiguchi RT; Potter-Perigo S; Braun K; Miller J; Ngo C; Fukuchi K; Wight TN; Kimata K; Snow AD J Neurosci Res; 1994 Aug; 38(6):670-86. PubMed ID: 7807583 [TBL] [Abstract][Full Text] [Related]
25. Analysis of proteoglycan expression in developing chicken brain: characterization of a heparan sulfate proteoglycan that interacts with the neural cell adhesion molecule. Burg MA; Halfter W; Cole GJ J Neurosci Res; 1995 May; 41(1):49-64. PubMed ID: 7674377 [TBL] [Abstract][Full Text] [Related]
26. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. Small DH; Nurcombe V; Reed G; Clarris H; Moir R; Beyreuther K; Masters CL J Neurosci; 1994 Apr; 14(4):2117-27. PubMed ID: 8158260 [TBL] [Abstract][Full Text] [Related]
27. Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney. Steer DL; Shah MM; Bush KT; Stuart RO; Sampogna RV; Meyer TN; Schwesinger C; Bai X; Esko JD; Nigam SK Dev Biol; 2004 Aug; 272(2):310-27. PubMed ID: 15282150 [TBL] [Abstract][Full Text] [Related]
28. Distinctive populations of basement membrane and cell membrane heparan sulfate proteoglycans are produced by cultured cell lines. Stow JL; Farquhar MG J Cell Biol; 1987 Jul; 105(1):529-39. PubMed ID: 2956272 [TBL] [Abstract][Full Text] [Related]
29. Functional interactions of neuronal heparan sulphate proteoglycans with laminin. Riopelle RJ; Dow KE Brain Res; 1990 Aug; 525(1):92-100. PubMed ID: 2123122 [TBL] [Abstract][Full Text] [Related]
30. Ligand binding to heparan sulfate proteoglycans induces their aggregation and distribution along actin cytoskeleton. Martinho RG; Castel S; Ureña J; Fernández-Borja M; Makiya R; Olivecrona G; Reina M; Alonso A; Vilaró S Mol Biol Cell; 1996 Nov; 7(11):1771-88. PubMed ID: 8930899 [TBL] [Abstract][Full Text] [Related]
31. Membrane anchoring of heparan sulfate proteoglycans by phosphatidylinositol and kinetics of synthesis of peripheral and detergent-solubilized proteoglycans in Schwann cells. Carey DJ; Evans DM J Cell Biol; 1989 May; 108(5):1891-7. PubMed ID: 2523890 [TBL] [Abstract][Full Text] [Related]
32. Exendin-4 promotes actin cytoskeleton rearrangement and protects cells from Nogo-A-Δ20 mediated spreading inhibition and growth cone collapse by down-regulating RhoA expression and activation via the PI3K pathway. Zhao F; Li J; Wang R; Xu H; Ma K; Kong X; Sun Z; Niu X; Jiang J; Liu B; Li B; Duan F; Chen X Biomed Pharmacother; 2019 Jan; 109():135-143. PubMed ID: 30396070 [TBL] [Abstract][Full Text] [Related]
33. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Christianson HC; Svensson KJ; van Kuppevelt TH; Li JP; Belting M Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17380-5. PubMed ID: 24101524 [TBL] [Abstract][Full Text] [Related]
34. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. Saksela O; Rifkin DB J Cell Biol; 1990 Mar; 110(3):767-75. PubMed ID: 2137829 [TBL] [Abstract][Full Text] [Related]
35. Interactions of neural glycosaminoglycans and proteoglycans with protein ligands: assessment of selectivity, heterogeneity and the participation of core proteins in binding. Herndon ME; Stipp CS; Lander AD Glycobiology; 1999 Feb; 9(2):143-55. PubMed ID: 9949192 [TBL] [Abstract][Full Text] [Related]
36. Alteration of endothelial proteoglycan and heparanase gene expression by high glucose, insulin and heparin. Han J; Hiebert LM Vascul Pharmacol; 2013; 59(3-4):112-8. PubMed ID: 23939434 [TBL] [Abstract][Full Text] [Related]
37. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020 [TBL] [Abstract][Full Text] [Related]
38. Localisation of specific heparan sulfate proteoglycans during the proliferative phase of brain development. Ford-Perriss M; Turner K; Guimond S; Apedaile A; Haubeck HD; Turnbull J; Murphy M Dev Dyn; 2003 Jun; 227(2):170-84. PubMed ID: 12761845 [TBL] [Abstract][Full Text] [Related]
39. Lead inhibits the core protein synthesis of a large heparan sulfate proteoglycan perlecan by proliferating vascular endothelial cells in culture. Fujiwara Y; Kaji T Toxicology; 1999 Apr; 133(2-3):159-69. PubMed ID: 10378482 [TBL] [Abstract][Full Text] [Related]
40. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Yang H; Wang L Adv Cancer Res; 2023; 157():251-291. PubMed ID: 36725112 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]