BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 28943393)

  • 41. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis.
    Korobova F; Svitkina T
    Mol Biol Cell; 2010 Jan; 21(1):165-76. PubMed ID: 19889835
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation.
    Bencsik N; Szíber Z; Liliom H; Tárnok K; Borbély S; Gulyás M; Rátkai A; Szűcs A; Hazai-Novák D; Ellwanger K; Rácz B; Pfizenmaier K; Hausser A; Schlett K
    J Cell Biol; 2015 Aug; 210(5):771-83. PubMed ID: 26304723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spine architecture and synaptic plasticity.
    Carlisle HJ; Kennedy MB
    Trends Neurosci; 2005 Apr; 28(4):182-7. PubMed ID: 15808352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biophysical Modeling of Actin-Mediated Structural Plasticity Reveals Mechanical Adaptation in Dendritic Spines.
    Bonilla-Quintana M; Rangamani P
    eNeuro; 2024 Mar; 11(3):. PubMed ID: 38383589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag?
    Okamoto K; Bosch M; Hayashi Y
    Physiology (Bethesda); 2009 Dec; 24():357-66. PubMed ID: 19996366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Change in the shape and density of dendritic spines caused by overexpression of acidic calponin in cultured hippocampal neurons.
    Rami G; Caillard O; Medina I; Pellegrino C; Fattoum A; Ben-Ari Y; Ferhat L
    Hippocampus; 2006; 16(2):183-97. PubMed ID: 16358313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural LTP: Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines.
    Yang Y; Liu JJ
    Curr Opin Neurobiol; 2022 Jun; 74():102534. PubMed ID: 35398661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dendritic spines: Revisiting the physiological role.
    Chidambaram SB; Rathipriya AG; Bolla SR; Bhat A; Ray B; Mahalakshmi AM; Manivasagam T; Thenmozhi AJ; Essa MM; Guillemin GJ; Chandra R; Sakharkar MK
    Prog Neuropsychopharmacol Biol Psychiatry; 2019 Jun; 92():161-193. PubMed ID: 30654089
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines.
    Roszkowska M; Skupien A; Wójtowicz T; Konopka A; Gorlewicz A; Kisiel M; Bekisz M; Ruszczycki B; Dolezyczek H; Rejmak E; Knapska E; Mozrzymas JW; Wlodarczyk J; Wilczynski GM; Dzwonek J
    Mol Biol Cell; 2016 Dec; 27(25):4055-4066. PubMed ID: 27798233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Factors critical for the plasticity of dendritic spines and memory storage.
    Matsuzaki M
    Neurosci Res; 2007 Jan; 57(1):1-9. PubMed ID: 17070951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus.
    Chang PK; Prenosil GA; Verbich D; Gill R; McKinney RA
    Eur J Neurosci; 2014 Sep; 40(5):2766-76. PubMed ID: 24925283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo.
    Messaoudi E; Kanhema T; Soulé J; Tiron A; Dagyte G; da Silva B; Bramham CR
    J Neurosci; 2007 Sep; 27(39):10445-55. PubMed ID: 17898216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development and regulation of dendritic spine synapses.
    Calabrese B; Wilson MS; Halpain S
    Physiology (Bethesda); 2006 Feb; 21():38-47. PubMed ID: 16443821
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dendritic spine plasticity: looking beyond development.
    Harms KJ; Dunaevsky A
    Brain Res; 2007 Dec; 1184():65-71. PubMed ID: 16600191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity-dependent dynamic microtubule invasion of dendritic spines.
    Hu X; Viesselmann C; Nam S; Merriam E; Dent EW
    J Neurosci; 2008 Dec; 28(49):13094-105. PubMed ID: 19052200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo.
    Pfeiffer T; Poll S; Bancelin S; Angibaud J; Inavalli VK; Keppler K; Mittag M; Fuhrmann M; Nägerl UV
    Elife; 2018 Jun; 7():. PubMed ID: 29932052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Actin dynamics in dendritic spines: a form of regulated plasticity at excitatory synapses.
    Matus A; Brinkhaus H; Wagner U
    Hippocampus; 2000; 10(5):555-60. PubMed ID: 11075825
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.
    Chazeau A; Giannone G
    Cell Mol Life Sci; 2016 Aug; 73(16):3053-73. PubMed ID: 27105623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Actin cytoskeleton in dendritic spine development and plasticity.
    Lei W; Omotade OF; Myers KR; Zheng JQ
    Curr Opin Neurobiol; 2016 Aug; 39():86-92. PubMed ID: 27138585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transmitting on actin: synaptic control of dendritic architecture.
    Schubert V; Dotti CG
    J Cell Sci; 2007 Jan; 120(Pt 2):205-12. PubMed ID: 17215449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.