These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28943426)

  • 1. Decreased environmental complexity during development impairs habituation of reinforcer effectiveness of sensory stimuli.
    Wang R; Hausknecht KA; Haj-Dahmane S; Shen RY; Richards JB
    Behav Brain Res; 2018 Jan; 337():53-60. PubMed ID: 28943426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prenatal ethanol exposure impairs sensory processing and habituation to visual stimuli, effects normalized by enrichment of postnatal environmental.
    Wang R; Martin CD; Lei AL; Hausknecht KA; Turk M; Micov V; Kwarteng F; Ishiwari K; Oubraim S; Wang AL; Richards JB; Haj-Dahmane S; Shen RY
    Alcohol Clin Exp Res; 2022 May; 46(5):891-906. PubMed ID: 35347730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habituation and the reinforcing effectiveness of visual stimuli.
    Lloyd DR; Gancarz AM; Ashrafioun L; Kausch MA; Richards JB
    Behav Processes; 2012 Oct; 91(2):184-91. PubMed ID: 22868172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotine and methamphetamine disrupt habituation of sensory reinforcer effectiveness in male rats.
    Lloyd DR; Hausknecht KA; Richards JB
    Exp Clin Psychopharmacol; 2014 Apr; 22(2):166-75. PubMed ID: 24708147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats.
    Brenes JC; Padilla M; Fornaguera J
    Behav Brain Res; 2009 Jan; 197(1):125-37. PubMed ID: 18786573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity.
    Varty GB; Paulus MP; Braff DL; Geyer MA
    Biol Psychiatry; 2000 May; 47(10):864-73. PubMed ID: 10807959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitization and habituation regulate reinforcer effectiveness.
    McSweeney FK; Murphy ES
    Neurobiol Learn Mem; 2009 Sep; 92(2):189-98. PubMed ID: 18674628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary Evaluations of Habituation of Operant Responding for Sensory Stimuli in Humans.
    Tonkin SS; Hawk LW
    Behav Processes; 2020 Sep; 178():104159. PubMed ID: 32504763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary evaluation of habituation and dishabituation of operant responding in mice.
    Vitale NL; Lewon M
    Behav Processes; 2023 Nov; 213():104967. PubMed ID: 37979922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus specificity and dishabituation of operant responding in humans.
    Kenzer AL; Ghezzi PM; Fuller T
    J Exp Anal Behav; 2013 Jul; 100(1):61-78. PubMed ID: 23633179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential rearing conditions alter operant responding for ethanol in outbred rats.
    Deehan GA; Cain ME; Kiefer SW
    Alcohol Clin Exp Res; 2007 Oct; 31(10):1692-8. PubMed ID: 17651466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tobacco smoking may delay habituation of reinforcer effectiveness in humans.
    Karelitz JL; Perkins KA
    Psychopharmacology (Berl); 2018 Aug; 235(8):2315-2321. PubMed ID: 29777289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of novelty and methamphetamine on conditioned and sensory reinforcement.
    Lloyd DR; Kausch MA; Gancarz AM; Beyley LJ; Richards JB
    Behav Brain Res; 2012 Oct; 234(2):312-22. PubMed ID: 22814112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal learning in C58 mice: Modeling higher order repetitive behavior.
    Whitehouse CM; Curry-Pochy LS; Shafer R; Rudy J; Lewis MH
    Behav Brain Res; 2017 Aug; 332():372-378. PubMed ID: 28624316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential reinforcement effects in rats reared in enriched and impoverished environments.
    Rose FD; Love S; Dell PA
    Physiol Behav; 1986; 36(6):1139-45. PubMed ID: 3725918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of satiety on operant responding in rats raised in enrichment.
    Gill MJ; Cain ME
    Behav Pharmacol; 2011 Feb; 22(1):40-8. PubMed ID: 21169812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration.
    Gomez AM; Sun WL; Midde NM; Harrod SB; Zhu J
    Eur J Neurosci; 2015 Jan; 41(1):109-19. PubMed ID: 25328101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operant sensation seeking in the mouse.
    Olsen CM; Winder DG
    J Vis Exp; 2010 Nov; (45):. PubMed ID: 21113110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental enrichment and a selective metabotropic glutamate receptor
    Garcia EJ; Cain ME
    Pharmacol Biochem Behav; 2020 May; 192():172907. PubMed ID: 32179027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus change dis-habituates operant responding supported by water reinforcers.
    McSweeney FK; Kowal BP; Murphy ES; Wiediger RS
    Behav Processes; 2005 Nov; 70(3):235-46. PubMed ID: 16112816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.