BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28943437)

  • 1. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.
    Huang J; Yang X; Peng X; Huang W
    Biochem Biophys Res Commun; 2017 Nov; 493(2):921-927. PubMed ID: 28943437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting mitochondria by anthelmintic drug atovaquone sensitizes renal cell carcinoma to chemotherapy and immunotherapy.
    Chen D; Sun X; Zhang X; Cao J
    J Biochem Mol Toxicol; 2018 Sep; 32(9):e22195. PubMed ID: 30004155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage.
    Zhu M; Li Y; Zhou Z
    Biochem Biophys Res Commun; 2017 Oct; 492(3):373-378. PubMed ID: 28847725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of mitochondrial translation effectively sensitizes renal cell carcinoma to chemotherapy.
    Wang B; Ao J; Yu D; Rao T; Ruan Y; Yao X
    Biochem Biophys Res Commun; 2017 Aug; 490(3):767-773. PubMed ID: 28645610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation.
    Jang Y; Han J; Kim SJ; Kim J; Lee MJ; Jeong S; Ryu MJ; Seo KS; Choi SY; Shong M; Lim K; Heo JY; Kweon GR
    Oncotarget; 2015 Nov; 6(35):38127-38. PubMed ID: 26474388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoprenylcysteine carboxylmethyltransferase regulates mitochondrial respiration and cancer cell metabolism.
    Teh JT; Zhu WL; Ilkayeva OR; Li Y; Gooding J; Casey PJ; Summers SA; Newgard CB; Wang M
    Oncogene; 2015 Jun; 34(25):3296-304. PubMed ID: 25151967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol-lowering drug pitavastatin targets lung cancer and angiogenesis via suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling.
    Hu T; Shen H; Huang H; Yang Z; Zhou Y; Zhao G
    Anticancer Drugs; 2020 Apr; 31(4):377-384. PubMed ID: 32011362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrvinium Sensitizes Clear Cell Renal Cell Carcinoma Response to Chemotherapy Via Casein Kinase 1α-Dependent Inhibition of Wnt/β-Catenin.
    Cui L; Zhao J; Liu J
    Am J Med Sci; 2018 Mar; 355(3):274-280. PubMed ID: 29549930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma.
    Hagiwara N; Watanabe M; Iizuka-Ohashi M; Yokota I; Toriyama S; Sukeno M; Tomosugi M; Sowa Y; Hongo F; Mikami K; Soh J; Fujito A; Miyashita H; Morioka Y; Miki T; Ukimura O; Sakai T
    Cancer Lett; 2018 Sep; 431():182-189. PubMed ID: 29778569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMGCR inhibition stabilizes the glycolytic enzyme PKM2 to support the growth of renal cell carcinoma.
    Huang J; Zhao X; Li X; Peng J; Yang W; Mi S
    PLoS Biol; 2021 Apr; 19(4):e3001197. PubMed ID: 33905408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simvastatin Reduces Cancerogenic Potential of Renal Cancer Cells via Geranylgeranyl Pyrophosphate and Mevalonate Pathway.
    Woschek M; Kneip N; Jurida K; Marzi I; Relja B
    Nutr Cancer; 2016; 68(3):420-7. PubMed ID: 27042994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simvastatin enhances chemotherapy in cervical cancer via inhibition of multiple prenylation-dependent GTPases-regulated pathways.
    Pan Q; Xu J; Ma L
    Fundam Clin Pharmacol; 2020 Feb; 34(1):32-40. PubMed ID: 31058344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gramicidin A induces metabolic dysfunction and energy depletion leading to cell death in renal cell carcinoma cells.
    David JM; Owens TA; Barwe SP; Rajasekaran AK
    Mol Cancer Ther; 2013 Nov; 12(11):2296-307. PubMed ID: 24006494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic inhibition of mitochondrial function induces cell death in starvation-resistant renal cell carcinomas.
    Isono T; Chano T; Yonese J; Yuasa T
    Sci Rep; 2016 May; 6():25669. PubMed ID: 27157976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma.
    Choi J; Koh E; Lee YS; Lee HW; Kang HG; Yoon YE; Han WK; Choi KH; Kim KS
    Biochem Biophys Res Commun; 2016 Jun; 474(3):547-553. PubMed ID: 27114304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mTOR activation is critical for betulin treatment in renal cell carcinoma cells.
    Cheng W; Ji S; Zhang H; Han Z; Liu Q; Wang J; Ping H
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1030-1036. PubMed ID: 27908730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doxycycline sensitizes renal cell carcinoma to chemotherapy by preferentially inhibiting mitochondrial translation.
    Wang B; Ao J; Li X; Yu W; Yu D; Qiu C
    J Int Med Res; 2021 Oct; 49(10):3000605211044368. PubMed ID: 34644207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of autophagy enhances apoptosis induced by the PI3K/AKT/mTor inhibitor NVP-BEZ235 in renal cell carcinoma cells.
    Li H; Jin X; Zhang Z; Xing Y; Kong X
    Cell Biochem Funct; 2013 Jul; 31(5):427-33. PubMed ID: 23086777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The novel histone deacetylase inhibitor, N-hydroxy-7-(2-naphthylthio) hepatonomide, exhibits potent antitumor activity due to cytochrome-c-release-mediated apoptosis in renal cell carcinoma cells.
    Park KC; Heo JH; Jeon JY; Choi HJ; Jo AR; Kim SW; Kwon HJ; Hong SJ; Han KS
    BMC Cancer; 2015 Jan; 15():19. PubMed ID: 25613585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pitavastatin, an HMG-CoA reductase inhibitor, exerts eNOS-independent protective actions against angiotensin II induced cardiovascular remodeling and renal insufficiency.
    Yagi S; Aihara K; Ikeda Y; Sumitomo Y; Yoshida S; Ise T; Iwase T; Ishikawa K; Azuma H; Akaike M; Matsumoto T
    Circ Res; 2008 Jan; 102(1):68-76. PubMed ID: 17967781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.