BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28943460)

  • 1. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides.
    Wang J; Mahajani M; Jackson SL; Yang Y; Chen M; Ferreira EM; Lin Y; Yan Y
    Metab Eng; 2017 Nov; 44():89-99. PubMed ID: 28943460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast Metabolic Engineering for Biosynthesis of Caffeic Acid-Derived Phenethyl Ester and Phenethyl Amide.
    Jia ZC; Liu D; Ma HD; Cui YH; Li HM; Li X; Yuan YJ
    ACS Synth Biol; 2023 Dec; 12(12):3635-3645. PubMed ID: 38016187
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M
    ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Diverse Hydroxycinnamoyl Phenylethanoid Esters Using Escherichia coli.
    Song MK; Cho AR; Sim G; Ahn JH
    J Agric Food Chem; 2019 Feb; 67(7):2028-2035. PubMed ID: 30698011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid.
    Zhou P; Yue C; Shen B; Du Y; Xu N; Ye L
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5809-5819. PubMed ID: 34283270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex.
    Lin Y; Yan Y
    Microb Cell Fact; 2012 Apr; 11():42. PubMed ID: 22475509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.
    Huang Q; Lin Y; Yan Y
    Biotechnol Bioeng; 2013 Dec; 110(12):3188-96. PubMed ID: 23801069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450.
    Haslinger K; Prather KLJ
    Microb Cell Fact; 2020 Feb; 19(1):26. PubMed ID: 32046741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering E. coli for caffeic acid biosynthesis from renewable sugars.
    Zhang H; Stephanopoulos G
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3333-41. PubMed ID: 23179615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a chimeric biosynthetic pathway for the de novo biosynthesis of rosmarinic acid in Escherichia coli.
    Bloch SE; Schmidt-Dannert C
    Chembiochem; 2014 Nov; 15(16):2393-401. PubMed ID: 25205019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy.
    Cai M; Liu J; Song X; Qi H; Li Y; Wu Z; Xu H; Qiao M
    Microb Cell Fact; 2022 May; 21(1):81. PubMed ID: 35538542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain.
    Kang SY; Choi O; Lee JK; Hwang BY; Uhm TB; Hong YS
    Microb Cell Fact; 2012 Dec; 11():153. PubMed ID: 23206756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of caffeoylmalic acid from glucose in engineered Escherichia coli.
    Li T; Zhou W; Bi H; Zhuang Y; Zhang T; Liu T
    Biotechnol Lett; 2018 Jul; 40(7):1057-1065. PubMed ID: 29845386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate.
    Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR
    Biotechnol J; 2015 Apr; 10(4):599-609. PubMed ID: 25641677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions.
    Yuan J; Mishra P; Ching CB
    J Biotechnol; 2016 Dec; 239():90-97. PubMed ID: 27746307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinating caffeic acid and salvianic acid A pathways for efficient production of rosmarinic acid in Escherichia coli.
    Wang L; Wang H; Chen J; Qin Z; Yu S; Zhou J
    Metab Eng; 2023 Mar; 76():29-38. PubMed ID: 36623792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of microorganisms for the production of structurally diverse esters.
    Menendez-Bravo S; Comba S; Gramajo H; Arabolaza A
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3043-3053. PubMed ID: 28275821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli.
    Eudes A; Juminaga D; Baidoo EE; Collins FW; Keasling JD; Loqué D
    Microb Cell Fact; 2013 Jun; 12():62. PubMed ID: 23806124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.
    Menendez-Bravo S; Comba S; Sabatini M; Arabolaza A; Gramajo H
    Metab Eng; 2014 Jul; 24():97-106. PubMed ID: 24831705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding ester biosynthesis in Escherichia coli.
    Rodriguez GM; Tashiro Y; Atsumi S
    Nat Chem Biol; 2014 Apr; 10(4):259-65. PubMed ID: 24609358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.