These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28943655)
21. The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites. Hasan MS; Ahmed I; Parsons AJ; Walker GS; Scotchford CA J Mech Behav Biomed Mater; 2013 Dec; 28():1-14. PubMed ID: 23959231 [TBL] [Abstract][Full Text] [Related]
22. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Fu Q; Rahaman MN; Bal BS; Brown RF; Day DE Acta Biomater; 2008 Nov; 4(6):1854-64. PubMed ID: 18519173 [TBL] [Abstract][Full Text] [Related]
23. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds. Bi L; Zobell B; Liu X; Rahaman MN; Bonewald LF Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():816-24. PubMed ID: 25063184 [TBL] [Abstract][Full Text] [Related]
24. Investigations on the Mechanical Properties of Glass Fiber/Sisal Fiber/Chitosan Reinforced Hybrid Polymer Sandwich Composite Scaffolds for Bone Fracture Fixation Applications. Arumugam S; Kandasamy J; Md Shah AU; Hameed Sultan MT; Safri SNA; Abdul Majid MS; Basri AA; Mustapha F Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32640502 [TBL] [Abstract][Full Text] [Related]
25. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672 [TBL] [Abstract][Full Text] [Related]
26. Porous bioactive glass matrix in reconstruction of articular osteochondral defects. Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567 [TBL] [Abstract][Full Text] [Related]
27. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds. Haimi S; Suuriniemi N; Haaparanta AM; Ellä V; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Kellomäki M; Miettinen S; Suuronen R Tissue Eng Part A; 2009 Jul; 15(7):1473-80. PubMed ID: 19072198 [TBL] [Abstract][Full Text] [Related]
28. Effect of Melt-Derived Bioactive Glass Particles on the Properties of Chitosan Scaffolds. Faqhiri H; Hannula M; Kellomäki M; Calejo MT; Massera J J Funct Biomater; 2019 Aug; 10(3):. PubMed ID: 31412615 [TBL] [Abstract][Full Text] [Related]
29. Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces. Zhang K; Ma Y; Francis LF J Biomed Mater Res; 2002 Sep; 61(4):551-63. PubMed ID: 12115445 [TBL] [Abstract][Full Text] [Related]
30. Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glass. Houaoui A; Lyyra I; Agniel R; Pauthe E; Massera J; Boissière M Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110340. PubMed ID: 31761244 [TBL] [Abstract][Full Text] [Related]
32. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
33. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold. Milan JL; Planell JA; Lacroix D Biomaterials; 2009 Sep; 30(25):4219-26. PubMed ID: 19477510 [TBL] [Abstract][Full Text] [Related]
34. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties. Oral O; Lassila LV; Kumbuloglu O; Vallittu PK Dent Mater; 2014 May; 30(5):570-7. PubMed ID: 24655591 [TBL] [Abstract][Full Text] [Related]
35. Bioactive glass/polymer composite scaffolds mimicking bone tissue. Gentile P; Mattioli-Belmonte M; Chiono V; Ferretti C; Baino F; Tonda-Turo C; Vitale-Brovarone C; Pashkuleva I; Reis RL; Ciardelli G J Biomed Mater Res A; 2012 Oct; 100(10):2654-67. PubMed ID: 22615261 [TBL] [Abstract][Full Text] [Related]
36. Additive-Manufactured Gyroid Scaffolds of Magnesium Oxide, Phosphate Glass Fiber and Polylactic Acid Composite for Bone Tissue Engineering. He L; Liu X; Rudd C Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33467495 [TBL] [Abstract][Full Text] [Related]
37. Binary bioactive glass composite scaffolds for bone tissue engineering-Structure and mechanical properties in micro and nano scale. A preliminary study. Woźniak MJ; Chlanda A; Oberbek P; Heljak M; Czarnecka K; Janeta M; John Ł Micron; 2019 Apr; 119():64-71. PubMed ID: 30682529 [TBL] [Abstract][Full Text] [Related]
38. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology. Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444 [TBL] [Abstract][Full Text] [Related]
39. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. Sharmin N; Hasan MS; Parsons AJ; Rudd CD; Ahmed I J Mech Behav Biomed Mater; 2016 Jun; 59():41-56. PubMed ID: 26745720 [TBL] [Abstract][Full Text] [Related]