These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28943655)
41. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone. Koleganova VA; Bernier SM; Dixon SJ; Rizkalla AS J Biomed Mater Res A; 2006 Jun; 77(3):572-9. PubMed ID: 16506172 [TBL] [Abstract][Full Text] [Related]
42. Nano-porous thermally sintered nano silica as novel fillers for dental composites. Atai M; Pahlavan A; Moin N Dent Mater; 2012 Feb; 28(2):133-45. PubMed ID: 22137937 [TBL] [Abstract][Full Text] [Related]
43. Mechanical properties of experimental composites containing bioactive glass after artificial aging in water and ethanol. Par M; Tarle Z; Hickel R; Ilie N Clin Oral Investig; 2019 Jun; 23(6):2733-2741. PubMed ID: 30361794 [TBL] [Abstract][Full Text] [Related]
44. Effects of adding resorbable phosphate glass fibres and PLA to calcium phosphate bone cements. Hasan MS; Carpenter N; Wei TL; McNally D; Ahmed I; Boszczyk BM J Appl Biomater Funct Mater; 2014 Dec; 12(3):203-9. PubMed ID: 24744228 [TBL] [Abstract][Full Text] [Related]
45. Elastic Mechanical Properties of 45S5-Based Bioactive Glass-Ceramic Scaffolds. Baino F; Fiume E Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31590231 [TBL] [Abstract][Full Text] [Related]
46. Investigating the Effects of Surface-Initiated Polymerization of ε-Caprolactone to Bioactive Glass Particles on the Mechanical Properties of Settable Polymer/Ceramic Composites. Harmata AJ; Ward CL; Zienkiewicz KJ; Wenke JC; Guelcher SA J Mater Res; 2014; 29(20):2398-2407. PubMed ID: 25798027 [TBL] [Abstract][Full Text] [Related]
47. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. Yazdimamaghani M; Razavi M; Vashaee D; Tayebi L Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():436-444. PubMed ID: 25686970 [TBL] [Abstract][Full Text] [Related]
48. Fracture Toughness, Flexural Strength, and Flexural Modulus of New CAD/CAM Resin Composite Blocks. Lucsanszky IJR; Ruse ND J Prosthodont; 2020 Jan; 29(1):34-41. PubMed ID: 31702090 [TBL] [Abstract][Full Text] [Related]
49. Biostable glass fibre-reinforced dimethacrylate-based composites as potential candidates for fracture fixation plates in toy-breed dogs: Mechanical testing and finite element analysis. Liesmäki O; Plyusnin A; Kulkova J; Lassila LVJ; Vallittu PK; Moritz N J Mech Behav Biomed Mater; 2019 Aug; 96():172-185. PubMed ID: 31048259 [TBL] [Abstract][Full Text] [Related]
50. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
51. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
52. Analysis of the Barbeck M; Serra T; Booms P; Stojanovic S; Najman S; Engel E; Sader R; Kirkpatrick CJ; Navarro M; Ghanaati S Bioact Mater; 2017 Dec; 2(4):208-223. PubMed ID: 29744431 [TBL] [Abstract][Full Text] [Related]
53. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Ahmed I; Parsons AJ; Palmer G; Knowles JC; Walker GS; Rudd CD Acta Biomater; 2008 Sep; 4(5):1307-14. PubMed ID: 18448401 [TBL] [Abstract][Full Text] [Related]
54. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Wagoner Johnson AJ; Herschler BA Acta Biomater; 2011 Jan; 7(1):16-30. PubMed ID: 20655397 [TBL] [Abstract][Full Text] [Related]
55. Damage mechanisms in bioactive glass matrix composites under uniaxial compression. Jiang Q; Ismail J; Zaïri F; Qu Z; Liu X; Zaïri F J Mech Behav Biomed Mater; 2018 Mar; 79():264-272. PubMed ID: 29335193 [TBL] [Abstract][Full Text] [Related]
56. Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Ali A; Ershad M; Vyas VK; Hira SK; Manna PP; Singh BN; Yadav S; Srivastava P; Singh SP; Pyare R Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():341-355. PubMed ID: 30274066 [TBL] [Abstract][Full Text] [Related]
57. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. Mattioli-Belmonte M; De Maria C; Vitale-Brovarone C; Baino F; Dicarlo M; Vozzi G J Tissue Eng Regen Med; 2017 Jul; 11(7):1986-1997. PubMed ID: 26510714 [TBL] [Abstract][Full Text] [Related]
58. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
59. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering. Lei B; Shin KH; Noh DY; Jo IH; Koh YH; Kim HE; Kim SE Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1102-8. PubMed ID: 23827548 [TBL] [Abstract][Full Text] [Related]
60. Orbital stress analysis, Part IV: Use of a "stiffness-graded" biodegradable implants to repair orbital blow-out fracture. Al-Sukhun J; Penttilä H; Ashammakhi N J Craniofac Surg; 2012 Jan; 23(1):126-30. PubMed ID: 22337388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]