These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28943669)

  • 1. Effect of low-concentration rhamnolipid biosurfactant on
    Liu G; Zhong H; Jiang Y; Brusseau ML; Huang J; Shi L; Liu Z; Liu Y; Zeng G
    Water Resour Res; 2017 Jan; 53(1):361-375. PubMed ID: 28943669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces.
    Zhong H; Liu G; Jiang Y; Brusseau ML; Liu Z; Liu Y; Zeng G
    Colloids Surf B Biointerfaces; 2016 Mar; 139():244-8. PubMed ID: 26722821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of low-concentration monorhamnolipid in cell surface hydrophobicity of Pseudomonas aeruginosa: adsorption or lipopolysaccharide content variation.
    Liu Y; Ma X; Zeng G; Zhong H; Liu Z; Jiang Y; Yuan X; He X; Lai M; He Y
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10231-41. PubMed ID: 25077779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of a Rhamnolipid Biosurfactant on the Transport of Bacteria through a Sandy Soil.
    Bai G; Brusseau ML; Miller RM
    Appl Environ Microbiol; 1997 May; 63(5):1866-73. PubMed ID: 16535601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions.
    Herman DC; Zhang Y; Miller RM
    Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa.
    Shreve GS; Inguva S; Gunnam S
    Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane.
    Zhang Y; Miller RM
    Appl Environ Microbiol; 1994 Jun; 60(6):2101-6. PubMed ID: 8031099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of growth conditions and NAPL presence on transport of Pseudomonas saccharophilia P15 through porous media.
    Link A; Chen M; Powers SE; Grimberg SJ
    Water Res; 2010 May; 44(9):2793-802. PubMed ID: 20219231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.
    Zhong H; Jiang Y; Zeng G; Liu Z; Liu L; Liu Y; Yang X; Lai M; He Y
    J Hazard Mater; 2015 Mar; 285():383-8. PubMed ID: 25528238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability.
    Noordman WH; Wachter JH; de Boer GJ; Janssen DB
    J Biotechnol; 2002 Mar; 94(2):195-212. PubMed ID: 11796172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction?
    Liu Y; Zeng G; Zhong H; Wang Z; Liu Z; Cheng M; Liu G; Yang X; Liu S
    J Hazard Mater; 2017 Jan; 322(Pt B):394-401. PubMed ID: 27773441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa.
    Noordman WH; Janssen DB
    Appl Environ Microbiol; 2002 Sep; 68(9):4502-8. PubMed ID: 12200306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity.
    Zhong H; Zeng GM; Liu JX; Xu XM; Yuan XZ; Fu HY; Huang GH; Liu ZF; Ding Y
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):671-7. PubMed ID: 18443784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand.
    Holden PA; LaMontagne MG; Bruce AK; Miller WG; Lindow SE
    Appl Environ Microbiol; 2002 May; 68(5):2509-18. PubMed ID: 11976128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosurfactant-affected mobility of oxytetracycline and its variations with surface chemical heterogeneity in saturated porous media.
    Jin Y; Chen J; Zhang Q; Farooq U; Lu T; Wang B; Qi Z; Chen W
    Water Res; 2023 Oct; 244():120509. PubMed ID: 37634454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-CMC solubilization of dodecane by rhamnolipid in saturated porous media.
    Zhong H; Zhang H; Liu Z; Yang X; Brusseau ML; Zeng G
    Sci Rep; 2016 Sep; 6():33266. PubMed ID: 27619361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhamnolipid surface thermodynamic properties and transport in agricultural soil.
    Renfro TD; Xie W; Yang G; Chen G
    Colloids Surf B Biointerfaces; 2014 Mar; 115():317-22. PubMed ID: 24394947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates.
    Al-Tahhan RA; Sandrin TR; Bodour AA; Maier RM
    Appl Environ Microbiol; 2000 Aug; 66(8):3262-8. PubMed ID: 10919779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces.
    Chakraborty S; Mukherji S; Mukherji S
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):101-8. PubMed ID: 20236810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant.
    Clifford JS; Ioannidis MA; Legge RL
    J Colloid Interface Sci; 2007 Jan; 305(2):361-5. PubMed ID: 17081555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.