BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 28943706)

  • 1. Theoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field Gradients.
    Dhavalikar R; Rinaldi C
    J Magn Magn Mater; 2016 Dec; 419():267-273. PubMed ID: 28943706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform.
    Hensley D; Tay ZW; Dhavalikar R; Zheng B; Goodwill P; Rinaldi C; Conolly S
    Phys Med Biol; 2017 May; 62(9):3483-3500. PubMed ID: 28032621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.
    Tay ZW; Chandrasekharan P; Chiu-Lam A; Hensley DW; Dhavalikar R; Zhou XY; Yu EY; Goodwill PW; Zheng B; Rinaldi C; Conolly SM
    ACS Nano; 2018 Apr; 12(4):3699-3713. PubMed ID: 29570277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).
    Bauer LM; Situ SF; Griswold MA; Samia AC
    Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment.
    Lu Y; Rivera-Rodriguez A; Tay ZW; Hensley D; Fung KLB; Colson C; Saayujya C; Huynh Q; Kabuli L; Fellows B; Chandrasekharan P; Rinaldi C; Conolly S
    Int J Hyperthermia; 2020 Dec; 37(3):141-154. PubMed ID: 33426994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging.
    Behrends A; Wei H; Neumann A; Friedrich T; Bakenecker AC; Franke J; Sajjamark K; Buchholz O; Bär S; Hofmann UG; Graeser M; Buzug TM
    Nanotheranostics; 2024; 8(2):163-178. PubMed ID: 38444740
    [No Abstract]   [Full Text] [Related]  

  • 8. Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy.
    Wells J; Twamley S; Sekar A; Ludwig A; Paysen H; Kosch O; Wiekhorst F
    Nanoscale; 2020 Sep; 12(35):18342-18355. PubMed ID: 32869808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
    Utkur M; Saritas EU
    Med Phys; 2022 Apr; 49(4):2590-2601. PubMed ID: 35103333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Local Magnetic Fluid Hyperthermia Based on High Gradient Field Guided by Magnetic Particle Imaging.
    Lei S; He J; Huang X; Hui H; An Y; Tian J
    IEEE Trans Biomed Eng; 2024 Mar; PP():. PubMed ID: 38498750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradient-Based Pulsed Excitation and Relaxation Encoding in Magnetic Particle Imaging.
    Jia G; Huang L; Wang Z; Liang X; Zhang Y; Zhang Y; Miao Q; Hu K; Li T; Wang Y; Xi L; Feng X; Hui H; Tian J
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3725-3733. PubMed ID: 35862339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectory analysis for field free line magnetic particle imaging.
    Top CB; Güngör A; Ilbey S; Güven HE
    Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia.
    Carlton H; Arepally N; Healy S; Sharma A; Ptashnik S; Schickel M; Newgren M; Goodwill P; Attaluri A; Ivkov R
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low drive field amplitude for improved image resolution in magnetic particle imaging.
    Croft LR; Goodwill PW; Konkle JJ; Arami H; Price DA; Li AX; Saritas EU; Conolly SM
    Med Phys; 2016 Jan; 43(1):424. PubMed ID: 26745935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focused RF hyperthermia using magnetic fluids.
    Tasci TO; Vargel I; Arat A; Guzel E; Korkusuz P; Atalar E
    Med Phys; 2009 May; 36(5):1906-12. PubMed ID: 19544810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Developments in Magnetic Hyperthermia Therapy (MHT) and Magnetic Particle Imaging (MPI) in the Brain Tumor Field: A Scoping Review and Meta-Analysis.
    Rentzeperis F; Rivera D; Zhang JY; Brown C; Young T; Rodriguez B; Schupper A; Price G; Gomberg J; Williams T; Bouras A; Hadjipanayis C
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow.
    Cantillon-Murphy P; Wald LL; Adalsteinsson E; Zahn M
    J Magn Magn Mater; 2010 Sep; 322(17):2607-2617. PubMed ID: 20625540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer.
    Sharma A; Cressman E; Attaluri A; Kraitchman DL; Ivkov R
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.