BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28943757)

  • 21. Sectoral variations in the distribution of axonal cytoskeleton proteins in the human optic nerve head.
    Kang MH; Law-Davis S; Balaratnasingam C; Yu DY
    Exp Eye Res; 2014 Nov; 128():141-50. PubMed ID: 25304220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Axonal cytoskeletal changes after non-disruptive axonal injury.
    Jafari SS; Maxwell WL; Neilson M; Graham DI
    J Neurocytol; 1997 Apr; 26(4):207-21. PubMed ID: 9192287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microtubule-associated protein 2 within axons of spinal motor neurons: associations with microtubules and neurofilaments in normal and beta,beta'-iminodipropionitrile-treated axons.
    Papasozomenos SC; Binder LI; Bender PK; Payne MR
    J Cell Biol; 1985 Jan; 100(1):74-85. PubMed ID: 4038401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons.
    Yuan A; Sasaki T; Rao MV; Kumar A; Kanumuri V; Dunlop DS; Liem RK; Nixon RA
    J Neurosci; 2009 Sep; 29(36):11316-29. PubMed ID: 19741138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective interruption of axonal transport of neurofilament proteins in the visual system by beta,beta'-iminodipropionitrile (IDPN) intoxication.
    Parhad IM; Griffin JW; Hoffman PN; Koves JF
    Brain Res; 1986 Jan; 363(2):315-24. PubMed ID: 2417667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying retinal nerve fiber layer thickness in whole-mounted retina.
    Huang XR; Knighton RW; Shestopalov V
    Exp Eye Res; 2006 Nov; 83(5):1096-101. PubMed ID: 16828473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.
    Nixon RA; Fischer I; Lewis SE
    J Cell Biol; 1990 Feb; 110(2):437-48. PubMed ID: 1688856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A useful programme in BASIC for axonal morphometry with introduction of new cytoskeletal parameters.
    Fernández E; Cuenca N; De Juan J
    J Neurosci Methods; 1991 Oct; 39(3):271-89. PubMed ID: 1787747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of optic nerve damage induced by chronic intraocular hypertension in rat.
    Wang J; Ge J; Sadun AA; Lam TT
    Yan Ke Xue Bao; 2004 Mar; 20(1):25-9. PubMed ID: 15124530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Y-39983, a selective Rho-associated protein kinase inhibitor, on blood flow in optic nerve head in rabbits and axonal regeneration of retinal ganglion cells in rats.
    Tokushige H; Waki M; Takayama Y; Tanihara H
    Curr Eye Res; 2011 Oct; 36(10):964-70. PubMed ID: 21950703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo imaging of retinal ganglion cell axons within the nerve fiber layer.
    Kanamori A; Catrinescu MM; Traistaru M; Beaubien R; Levin LA
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):2011-8. PubMed ID: 19797216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual experience during postnatal development determines the size of optic nerve axons.
    Fernández E; Cuenca N; Cerezo JR; De Juan J
    Neuroreport; 1993 Dec; 5(3):365-7. PubMed ID: 8298106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases.
    Xue C; Shtylla B; Brown A
    PLoS Comput Biol; 2015 Aug; 11(8):e1004406. PubMed ID: 26285012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytoskeletal proteins at the cholinergic synapse: distribution of desmin, actin, fodrin, neurofilaments, and tubulin in Torpedo electric organ.
    Walker JH; Boustead CM; Witzemann V; Shaw G; Weber K; Osborn M
    Eur J Cell Biol; 1985 Jul; 38(1):123-33. PubMed ID: 3896807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport.
    Nixon RA; Lewis SE; Dahl D; Marotta CA; Drager UC
    Brain Res Mol Brain Res; 1989 Mar; 5(2):93-108. PubMed ID: 2469928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE; Nixon RA
    J Cell Biol; 1988 Dec; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Severe, early axonal degeneration following experimental anterior ischemic optic neuropathy.
    Lee GH; Stanford MP; Shariati MA; Ma JH; Liao YJ
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(11):7111-8. PubMed ID: 25249599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration.
    García-Ayuso D; Salinas-Navarro M; Agudo-Barriuso M; Alarcón-Martínez L; Vidal-Sanz M; Villegas-Pérez MP
    Mol Vis; 2011; 17():1716-33. PubMed ID: 21738401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical role of calpain in axonal damage-induced retinal ganglion cell death.
    Ryu M; Yasuda M; Shi D; Shanab AY; Watanabe R; Himori N; Omodaka K; Yokoyama Y; Takano J; Saido T; Nakazawa T
    J Neurosci Res; 2012 Apr; 90(4):802-15. PubMed ID: 22065590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport.
    Roy S; Coffee P; Smith G; Liem RK; Brady ST; Black MM
    J Neurosci; 2000 Sep; 20(18):6849-61. PubMed ID: 10995829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.