These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 28944018)

  • 1. Accounting for imperfect detection of groups and individuals when estimating abundance.
    Clement MJ; Converse SJ; Royle JA
    Ecol Evol; 2017 Sep; 7(18):7304-7310. PubMed ID: 28944018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abundance estimation for line transect sampling: A comparison of distance sampling and spatial capture-recapture models.
    Crum NJ; Neyman LC; Gowan TA
    PLoS One; 2021; 16(5):e0252231. PubMed ID: 34048456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of distance on detectability of Arctic waterfowl using double-observer sampling during helicopter surveys.
    Alisauskas RT; Conn PB
    Ecol Evol; 2019 Jan; 9(2):859-867. PubMed ID: 30766675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of hoop-net trapping and visual surveys to monitor abundance of the Rio Grande cooter (
    Mali I; Duarte A; Forstner MRJ
    PeerJ; 2018; 6():e4677. PubMed ID: 29770271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accounting for imperfect detection when estimating species-area relationships and beta-diversity.
    Noble CD; Peres CA; Gilroy JJ
    Ecol Evol; 2024 Jul; 14(7):e70017. PubMed ID: 38988344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of close-kin mark-recapture estimators to dispersal limitation and spatially varying sampling probabilities.
    Conn PB; Bravington MV; Baylis S; Ver Hoef JM
    Ecol Evol; 2020 Jun; 10(12):5558-5569. PubMed ID: 32607174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An open spatial capture-recapture model for estimating density, movement, and population dynamics from line-transect surveys.
    Gowan TA; Crum NJ; Roberts JJ
    Ecol Evol; 2021 Jun; 11(12):7354-7365. PubMed ID: 34188818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considering sampling bias in close-kin mark-recapture abundance estimates of Atlantic salmon.
    Wacker S; Skaug HJ; Forseth T; Solem Ø; Ulvan EM; Fiske P; Karlsson S
    Ecol Evol; 2021 May; 11(9):3917-3932. PubMed ID: 33976784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of hidden Markov capture-recapture models to estimate abundance in the presence of uncertainty: Application to the estimation of prevalence of hybrids in animal populations.
    Santostasi NL; Ciucci P; Caniglia R; Fabbri E; Molinari L; Reggioni W; Gimenez O
    Ecol Evol; 2019 Jan; 9(2):744-755. PubMed ID: 30766665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient extension of N-mixture models for multi-species abundance estimation.
    Gomez JP; Robinson SK; Blackburn JK; Ponciano JM
    Methods Ecol Evol; 2018 Feb; 9(2):340-353. PubMed ID: 29892335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.
    Yamaura Y; Connor EF; Royle JA; Itoh K; Sato K; Taki H; Mishima Y
    Ecol Evol; 2016 Jul; 6(14):4836-48. PubMed ID: 27547317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rejection of Schmidt et al.'s estimators for bear population size.
    Becker E; Christ A
    Ecol Evol; 2019 May; 9(10):6157-6164. PubMed ID: 31161027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-mixture models for population estimation: Application in spotted lanternfly egg mass survey.
    Liu H; Julian JT
    Curr Res Insect Sci; 2024; 5():100078. PubMed ID: 38576775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New technologies in the mix: Assessing N-mixture models for abundance estimation using automated detection data from drone surveys.
    Corcoran E; Denman S; Hamilton G
    Ecol Evol; 2020 Aug; 10(15):8176-8185. PubMed ID: 32788970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-dependent space use affects interpretation of camera trap detection rates.
    Broadley K; Burton AC; Avgar T; Boutin S
    Ecol Evol; 2019 Dec; 9(24):14031-14041. PubMed ID: 31938501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disease-structured
    DiRenzo GV; Che-Castaldo C; Saunders SP; Campbell Grant EH; Zipkin EF
    Ecol Evol; 2019 Jan; 9(2):899-909. PubMed ID: 30766679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supplemental structured surveys and pre-existing detection models improve fine-scale density and population estimation with opportunistic community science data.
    Hallman TA; Robinson WD
    Sci Rep; 2024 May; 14(1):11070. PubMed ID: 38745056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robustness of Eco-Epidemiological Capture-Recapture Parameter Estimates to Variation in Infection State Uncertainty.
    Benhaiem S; Marescot L; Hofer H; East ML; Lebreton JD; Kramer-Schadt S; Gimenez O
    Front Vet Sci; 2018; 5():197. PubMed ID: 30211175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Whooping Crane Abundance Using Aerial Surveys: Influences on Detectability.
    Strobel BN; Butler MJ
    Wildl Soc Bull; 2014 Mar; 38(1):188-195. PubMed ID: 26388657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring species richness using multispecies occupancy modeling: Estimation performance and interpretation.
    Guillera-Arroita G; Kéry M; Lahoz-Monfort JJ
    Ecol Evol; 2019 Jan; 9(2):780-792. PubMed ID: 30766668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.