These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 28944049)

  • 1. Achmatowicz Reaction and its Application in the Syntheses of Bioactive Molecules.
    Ghosh AK; Brindisi M
    RSC Adv; 2016; 6(112):111564-111598. PubMed ID: 28944049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products.
    Liang L; Guo LD; Tong R
    Acc Chem Res; 2022 Aug; 55(16):2326-2340. PubMed ID: 35916456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective total synthesis of decytospolide A and decytospolide B using an Achmatowicz reaction.
    Ghosh AK; Simpson HM; Veitschegger AM
    Org Biomol Chem; 2018 Aug; 16(33):5979-5986. PubMed ID: 30083684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product.
    Fuwa H
    Mar Drugs; 2016 Mar; 14(4):. PubMed ID: 27023567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyranone natural products as inspirations for catalytic reaction discovery and development.
    McDonald BR; Scheidt KA
    Acc Chem Res; 2015 Apr; 48(4):1172-83. PubMed ID: 25742935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the Petasis-Ferrier union/rearrangement tactic: construction of architecturally complex natural products possessing the ubiquitous cis-2,6-substituted tetrahydropyran structural element.
    Smith AB; Fox RJ; Razler TM
    Acc Chem Res; 2008 May; 41(5):675-87. PubMed ID: 18489082
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kim S; Oiler J; Xing Y; O'Doherty GA
    Chem Commun (Camb); 2022 Nov; 58(93):12913-12926. PubMed ID: 36321854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addition/oxidative rearrangement of 3-furfurals and 3-furyl imines: new approaches to substituted furans and pyrroles.
    Kelly AR; Kerrigan MH; Walsh PJ
    J Am Chem Soc; 2008 Mar; 130(12):4097-104. PubMed ID: 18314989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile access to cis-2,6-disubstituted tetrahydropyrans by palladium-catalyzed decarboxylative allylation: total syntheses of (±)-centrolobine and (+)-decytospolides A and B.
    Zeng J; Tan YJ; Ma J; Leow ML; Tirtorahardjo D; Liu XW
    Chemistry; 2014 Jan; 20(2):405-9. PubMed ID: 24285699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prins cyclization-mediated stereoselective synthesis of tetrahydropyrans and dihydropyrans: an inspection of twenty years.
    Budakoti A; Mondal PK; Verma P; Khamrai J
    Beilstein J Org Chem; 2021; 17():932-963. PubMed ID: 33981366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Strategies in the Efficient Total Syntheses of Polycyclic Natural Products.
    Liu W; Hong B; Wang J; Lei X
    Acc Chem Res; 2020 Nov; 53(11):2569-2586. PubMed ID: 33136373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BiBr
    Cheng WF; Ma S; Lai YT; Cheung YT; Akkarasereenon K; Zhou Y; Tong R
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202311671. PubMed ID: 37724977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in the Stereoselective Total Synthesis of Natural Pyranones Having Long Side Chains.
    Avula SK; Das B; Csuk R; Al-Rawahi A; Al-Harrasi A
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses.
    Ghosh AK; Sarkar A; Brindisi M
    Org Biomol Chem; 2018 Mar; 16(12):2006-2027. PubMed ID: 29479624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An advance on exploring N-tert-butanesulfinyl imines in asymmetric synthesis of chiral amines.
    Lin GQ; Xu MH; Zhong YW; Sun XW
    Acc Chem Res; 2008 Jul; 41(7):831-40. PubMed ID: 18533688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1,5-Allyl Shift by a Sequential Achmatowicz/Oxonia-Cope/Retro-Achmatowicz Rearrangement.
    Zhang X; Tong Y; Li G; Zhao H; Chen G; Yao H; Tong R
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205919. PubMed ID: 35670657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biorefinery via Achmatowicz Rearrangement: Synthesis of Pentane-1,2,5-triol from Furfuryl Alcohol.
    Simeonov SP; Ravutsov MA; Mihovilovic MD
    ChemSusChem; 2019 Jun; 12(12):2748-2754. PubMed ID: 31050856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.
    Qu J; Helmchen G
    Acc Chem Res; 2017 Oct; 50(10):2539-2555. PubMed ID: 28937739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective total syntheses of FR901464 and spliceostatin A and evaluation of splicing activity of key derivatives.
    Ghosh AK; Chen ZH; Effenberger KA; Jurica MS
    J Org Chem; 2014 Jun; 79(12):5697-709. PubMed ID: 24873648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the aza-Achmatowicz oxidative rearrangement for the stereoselective synthesis of the Cassia and Prosopis alkaloid family.
    Leverett CA; Cassidy MP; Padwa A
    J Org Chem; 2006 Oct; 71(22):8591-601. PubMed ID: 17064038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.