These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 2894412)
1. Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes). Sánchez-Prieto J; González P J Neurochem; 1988 Apr; 50(4):1322-4. PubMed ID: 2894412 [TBL] [Abstract][Full Text] [Related]
2. Ca2+-dependent and Ca2+-independent glutamate release, energy status and cytosolic free Ca2+ concentration in isolated nerve terminals following metabolic inhibition: possible relevance to hypoglycaemia and anoxia. Kauppinen RA; McMahon HT; Nicholls DG Neuroscience; 1988 Oct; 27(1):175-82. PubMed ID: 2904664 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes. Sanchez-Prieto J; Sihra TS; Nicholls DG J Neurochem; 1987 Jul; 49(1):58-64. PubMed ID: 2884280 [TBL] [Abstract][Full Text] [Related]
4. Ca(2+)-independent release of glutamate during in vitro anoxia in isolated nerve terminals. Rubio I; Torres M; Miras-Portugal MT; Sánchez-Prieto J J Neurochem; 1991 Oct; 57(4):1159-64. PubMed ID: 1680156 [TBL] [Abstract][Full Text] [Related]
5. Transmitter glutamate release from isolated nerve terminals: evidence for biphasic release and triggering by localized Ca2+. McMahon HT; Nicholls DG J Neurochem; 1991 Jan; 56(1):86-94. PubMed ID: 1670958 [TBL] [Abstract][Full Text] [Related]
6. Histidine release from brain slices and synaptosomes. Tuomisto L; Antikainen T; Raatikainen O; Kauppinen R Agents Actions; 1989 Apr; 27(1-2):123-6. PubMed ID: 2750585 [TBL] [Abstract][Full Text] [Related]
7. Rat cortical synaptosomes have more than one mechanism for Ca2+ entry linked to rapid glutamate release: studies using the Phoneutria nigriventer toxin PhTX2 and potassium depolarization. Romano-Silva MA; Ribeiro-Santos R; Ribeiro AM; Gomez MV; Diniz CR; Cordeiro MN; Brammer MJ Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):313-9. PubMed ID: 7504921 [TBL] [Abstract][Full Text] [Related]
8. Calcium-dependent release of accumulated glutamate from synaptic vesicles within permeabilized nerve terminals. Kish PE; Ueda T Neurosci Lett; 1991 Jan; 122(2):179-82. PubMed ID: 1902921 [TBL] [Abstract][Full Text] [Related]
9. Activity-dependent recruitment of endogenous glutamate for exocytosis. Verhage M; Lopes da Silva FH; Ghijsen WE Neuroscience; 1991; 43(1):59-66. PubMed ID: 1681460 [TBL] [Abstract][Full Text] [Related]
10. HDT-1, a new synthetic compound, inhibits glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Wang SJ; Chou SH; Kuo YC; Chou SS; Tzeng WF; Leu JY; Huang RF; Liew YF Acta Pharmacol Sin; 2008 Nov; 29(11):1289-95. PubMed ID: 18954522 [TBL] [Abstract][Full Text] [Related]
11. Fangchinoline inhibits glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Lin TY; Lu CW; Tien LT; Chuang SH; Wang YR; Chang WH; Wang SJ Neurochem Int; 2009 Jul; 54(8):506-12. PubMed ID: 19428795 [TBL] [Abstract][Full Text] [Related]
12. Organic calcium channel blockers enhance [3H]purine release from rat brain cortical synaptosomes. Wu PH; Moron M; Barraco R Neurochem Res; 1984 Aug; 9(8):1019-31. PubMed ID: 6149478 [TBL] [Abstract][Full Text] [Related]
13. From the synaptosome to the intact brain. Kauppinen RA Biochem Soc Trans; 1994 Nov; 22(4):965-9. PubMed ID: 7698494 [No Abstract] [Full Text] [Related]
14. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. Nicholls DG; Sihra TS; Sanchez-Prieto J J Neurochem; 1987 Jul; 49(1):50-7. PubMed ID: 2884279 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Wang SJ; Wang KY; Wang WC Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158 [TBL] [Abstract][Full Text] [Related]
16. A novel tool for the investigation of glutamate release from rat cerebrocortical synaptosomes: the toxin Tx3-3 from the venom of the spider Phoneutria nigriventer. Prado MA; Guatimosim C; Gomez MV; Diniz CR; Cordeiro MN; Romano-Silva MA Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):145-50. PubMed ID: 8660275 [TBL] [Abstract][Full Text] [Related]
17. Chloride-dependent uncoupling of oxidative phosphorylation by triethyllead and triethyltin increases cytosolic free calcium in guinea pig cerebral cortical synaptosomes. Kauppinen RA; Komulainen H; Taipale HT J Neurochem; 1988 Nov; 51(5):1617-25. PubMed ID: 3171593 [TBL] [Abstract][Full Text] [Related]
18. Tityustoxin-mediated Na+ influx is more efficient than KCl depolarisation in promoting Ca(2+)-dependent glutamate release from synaptosomes. Romano-Silva MA; Ribeiro-Santos R; Gomez MV; Moraes-Santos T; Brammer MJ Neurosci Lett; 1994 Mar; 169(1-2):90-2. PubMed ID: 7914019 [TBL] [Abstract][Full Text] [Related]
19. Peroxide effects on [3H]L-glutamate release by synaptosomes isolated from the cerebral cortex. Gilman SC; Bonner MJ; Pellmar TC Neurosci Lett; 1992 Jun; 140(2):157-60. PubMed ID: 1354341 [TBL] [Abstract][Full Text] [Related]
20. Relationships between ATP depletion, membrane potential, and the release of neurotransmitters in rat nerve terminals. An in vitro study under conditions that mimic anoxia, hypoglycemia, and ischemia. Santos MS; Moreno AJ; Carvalho AP Stroke; 1996 May; 27(5):941-50. PubMed ID: 8623117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]