These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 28944482)
1. Molecular mechanism for muscarinic M Matsuoka H; Inoue M J Physiol; 2017 Nov; 595(22):6851-6867. PubMed ID: 28944482 [TBL] [Abstract][Full Text] [Related]
2. Muscarinic receptor stimulation induces TASK1 channel endocytosis through a PKC-Pyk2-Src pathway in PC12 cells. Matsuoka H; Harada K; Mashima K; Inoue M Cell Signal; 2020 Jan; 65():109434. PubMed ID: 31676368 [TBL] [Abstract][Full Text] [Related]
3. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor. Matsuoka H; Inoue M Am J Physiol Cell Physiol; 2015 Aug; 309(4):C251-63. PubMed ID: 26084307 [TBL] [Abstract][Full Text] [Related]
4. Nerve growth factor-induced endocytosis of TWIK-related acid-sensitive K⁺ 1 channels in adrenal medullary cells and PC12 cells. Matsuoka H; Harada K; Nakamura J; Inoue M Pflugers Arch; 2013 Jul; 465(7):1051-64. PubMed ID: 23377568 [TBL] [Abstract][Full Text] [Related]
5. Differences among muscarinic agonists in M Inoue M; Harada K; Matsui M; Matsuoka H Eur J Pharmacol; 2019 Jan; 843():104-112. PubMed ID: 30452911 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of TASK1-like channels by muscarinic receptor stimulation in rat adrenal medullary cells. Inoue M; Harada K; Matsuoka H; Sata T; Warashina A J Neurochem; 2008 Aug; 106(4):1804-14. PubMed ID: 18554317 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells. Inoue M; Harada K; Matsuoka H; Nakamura J; Warashina A Am J Physiol Cell Physiol; 2012 Sep; 303(6):C635-44. PubMed ID: 22744007 [TBL] [Abstract][Full Text] [Related]
8. TASK channels: channelopathies, trafficking, and receptor-mediated inhibition. Inoue M; Matsuoka H; Harada K; Mugishima G; Kameyama M Pflugers Arch; 2020 Jul; 472(7):911-922. PubMed ID: 32472332 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of muscarinic receptor-mediated excitation in spontaneously hypertensive rat adrenal medullary chromaffin cells. Inoue M; Harada K Auton Neurosci; 2023 Sep; 248():103108. PubMed ID: 37467550 [TBL] [Abstract][Full Text] [Related]
10. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion. Harada K; Matsuoka H; Miyata H; Matsui M; Inoue M Br J Pharmacol; 2015 Mar; 172(5):1348-59. PubMed ID: 25393049 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms for pituitary adenylate cyclase-activating polypeptide-induced increase in excitability in guinea-pig and mouse adrenal medullary cells. Inoue M; Harada K; Matsuoka H Eur J Pharmacol; 2020 Apr; 872():172956. PubMed ID: 32001221 [TBL] [Abstract][Full Text] [Related]
12. Lack of p11 expression facilitates acidity-sensing function of TASK1 channels in mouse adrenal medullary cells. Inoue M; Matsuoka H; Lesage F; Harada K FASEB J; 2019 Jan; 33(1):455-468. PubMed ID: 30001168 [TBL] [Abstract][Full Text] [Related]
13. Acetylcholine-dependent upregulation of TASK-1 channels in thalamic interneurons by a smooth muscle-like signalling pathway. Leist M; Rinné S; Datunashvili M; Aissaoui A; Pape HC; Decher N; Meuth SG; Budde T J Physiol; 2017 Sep; 595(17):5875-5893. PubMed ID: 28714121 [TBL] [Abstract][Full Text] [Related]
14. Expression of p11 and heteromeric TASK channels in mouse adrenal cortical cells and H295R cells. Matsuoka H; Harada K; Sugawara A; Kim D; Inoue M Acta Histochem; 2022 Jul; 124(5):151898. PubMed ID: 35526370 [TBL] [Abstract][Full Text] [Related]
15. Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Bista P; Meuth SG; Kanyshkova T; Cerina M; Pawlowski M; Ehling P; Landgraf P; Borsotto M; Heurteaux C; Pape HC; Baukrowitz T; Budde T Pflugers Arch; 2012 Jan; 463(1):89-102. PubMed ID: 22083644 [TBL] [Abstract][Full Text] [Related]
16. Muscarinic receptors in adrenal chromaffin cells: physiological role and regulation of ion channels. Inoue M; Matsuoka H; Harada K; Kao LS Pflugers Arch; 2018 Jan; 470(1):29-38. PubMed ID: 28762161 [TBL] [Abstract][Full Text] [Related]
17. STIM1-dependent membrane insertion of heteromeric TRPC1-TRPC4 channels in response to muscarinic receptor stimulation. Harada K; Matsuoka H; Inoue M J Cell Sci; 2019 May; 132(11):. PubMed ID: 31036675 [TBL] [Abstract][Full Text] [Related]
18. Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons. Bista P; Pawlowski M; Cerina M; Ehling P; Leist M; Meuth P; Aissaoui A; Borsotto M; Heurteaux C; Decher N; Pape HC; Oliver D; Meuth SG; Budde T J Physiol; 2015 Jan; 593(1):127-44. PubMed ID: 25556792 [TBL] [Abstract][Full Text] [Related]
19. Muscarinic activation of mitogen-activated protein kinase in rat thyroid epithelial cells. Jiménez E; Gámez MI; Bragado MJ; Montiel M Cell Signal; 2002 Aug; 14(8):665-72. PubMed ID: 12020766 [TBL] [Abstract][Full Text] [Related]
20. Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Calabresi P; Centonze D; Gubellini P; Pisani A; Bernardi G Eur J Neurosci; 1998 Sep; 10(9):2887-95. PubMed ID: 9758158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]