These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28944970)
1. Comparison of a polymeric pseudostationary phase in EKC with ODS stationary phase in RP-HPLC. Ni X; Zhang M; Xing X; Cao Y; Cao G Electrophoresis; 2018 Jan; 39(2):370-376. PubMed ID: 28944970 [TBL] [Abstract][Full Text] [Related]
2. The effects of organic modifier on physicochemical and chromatographic characteristics of self-assembled micelle from poly (stearyl methacrylate-co-methacrylic acid) in electrokinetic chromatography. Zhang M; Ni X; Cao Y; Xin X; Cao G Electrophoresis; 2016 Aug; 37(15-16):2226-34. PubMed ID: 27334427 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical and chromatographic characteristics of random amphiphilic copolymer aggregation in electrokinetic chromatography. Ni X; Zhuo X; Xu X; Cao Y; Cao G J Chromatogr A; 2014 Oct; 1365():219-25. PubMed ID: 25219522 [TBL] [Abstract][Full Text] [Related]
4. Determination of phthalates in food packing materials by electrokinetic chromatography with polymeric pseudostationary phase. Ni X; Xing X; Cao Y; Cao G Food Chem; 2016 Jan; 190():386-391. PubMed ID: 26212987 [TBL] [Abstract][Full Text] [Related]
5. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase. Ni X; Xing X; Cao Y; Cao G J Chromatogr A; 2014 Nov; 1370():263-9. PubMed ID: 25454151 [TBL] [Abstract][Full Text] [Related]
6. Polymeric micelle as the pseudostationary phase in electrokinetic chromatography. Wang B; Ni X; Yu M; Cao Y J Chromatogr A; 2012 Jul; 1245():190-8. PubMed ID: 22633065 [TBL] [Abstract][Full Text] [Related]
8. Electrokinetic chromatographic characterization of novel catanionic surfactants vesicle as pseudostationary phase. Lu J; Ni X; Cao Y; Ma X; Cao G Electrophoresis; 2015 Jan; 36(2):312-8. PubMed ID: 25348281 [TBL] [Abstract][Full Text] [Related]
9. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure. Okusa K; Iwasaki Y; Kuroda I; Miwa S; Ohira M; Nagai T; Mizobe H; Gotoh N; Ikegami T; McCalley DV; Tanaka N J Chromatogr A; 2014 Apr; 1339():86-95. PubMed ID: 24666940 [TBL] [Abstract][Full Text] [Related]
10. [Electrokinetic chromatographic properties of amphiphilic copolymer poly (styrene-co-methacrylic acid) self-assembled micelle pseudostationary phase]. Ma X; Ni X; Lu J; Xing X; Cao Y; Cao G Se Pu; 2015 Apr; 33(4):403-7. PubMed ID: 26292411 [TBL] [Abstract][Full Text] [Related]
12. Selectivity comparisons of monolithic silica capillary columns modified with poly(octadecyl methacrylate) and octadecyl moieties for halogenated compounds in reversed-phase liquid chromatography. Soonthorntantikul W; Leepipatpiboon N; Ikegami T; Tanaka N; Nhujak T J Chromatogr A; 2009 Jul; 1216(31):5868-74. PubMed ID: 19560150 [TBL] [Abstract][Full Text] [Related]
13. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure. Yui Y; Miyazaki S; Ma Y; Ohira M; Fiehn O; Ikegami T; McCalley DV; Tanaka N J Chromatogr A; 2016 Jun; 1450():45-52. PubMed ID: 27157422 [TBL] [Abstract][Full Text] [Related]
14. Polymeric sulfated surfactants with varied hydrocarbon tail: II. Chemical selectivity in micellar electrokinetic chromatography using linear solvation energy relationships study. Akbay C; Shamsi SA Electrophoresis; 2004 Feb; 25(4-5):635-44. PubMed ID: 14981691 [TBL] [Abstract][Full Text] [Related]
15. Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography. Part II: characterization of chemical selectivity using two linear solvation energy relationship models. Akbay C; Agbaria RA; Warner IM Electrophoresis; 2005 Jan; 26(2):426-45. PubMed ID: 15657890 [TBL] [Abstract][Full Text] [Related]
16. Effects of organic modifiers on retention mechanism and selectivity in micellar electrokinetic capillary chromatography studied by linear solvation energy relationships. Liu Z; Zou H; Ye M; Ni J; Zhang Y J Chromatogr A; 1999 Nov; 863(1):69-79. PubMed ID: 10591465 [TBL] [Abstract][Full Text] [Related]
17. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase. Zhao WW; Zhang CY; Yan ZG; Bai LP; Wang X; Huang H; Zhou YY; Xie Y; Li FS; Li JR J Chromatogr A; 2014 Nov; 1370():121-8. PubMed ID: 25454136 [TBL] [Abstract][Full Text] [Related]
18. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones. Aral H; Aral T; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2013 Nov; 116():155-63. PubMed ID: 24148387 [TBL] [Abstract][Full Text] [Related]
19. Capillary electrokinetic chromatography with polyethyleneimine as replaceable cationic pseudostationary phase. Influence of methanol and acetonitrile on separation selectivity. Maichel B; Potocek B; Gas B; Kenndler E J Chromatogr A; 1999 Aug; 853(1-2):121-9. PubMed ID: 10486718 [TBL] [Abstract][Full Text] [Related]
20. Application of linear solvation energy relationships to polymeric pseudostationary phases in micellar electrokinetic chromatography. Fujimoto C Electrophoresis; 2001 Apr; 22(7):1322-9. PubMed ID: 11379954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]