These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28945146)

  • 1. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.
    van den Ban S; Pitt KG; Whiteman M
    Pharm Dev Technol; 2018 Feb; 23(2):176-182. PubMed ID: 28945146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process.
    Möltgen CV; Puchert T; Menezes JC; Lochmann D; Reich G
    Talanta; 2012 Apr; 92():26-37. PubMed ID: 22385804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Step-wise approach to developing a scale-independent design space for functional tablet coating process.
    Debevec V; Stanić Ljubin T; Jeraj Ž; Rozman Peterka T; Bratuž B; Gašperlin D; Srčič S; Horvat M
    Drug Dev Ind Pharm; 2020 Apr; 46(4):566-575. PubMed ID: 32233693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.
    Zacour BM; Pandey P; Subramanian G; Gao JZ; Nikfar F
    Drug Dev Ind Pharm; 2014 Jun; 40(6):829-37. PubMed ID: 23638984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the thermodynamic micro-environment inside a pan coater using a data logging device.
    Pandey P; Ji J; Subramanian G; Gour S; Bindra DS
    Drug Dev Ind Pharm; 2014 Apr; 40(4):542-8. PubMed ID: 23590129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality by design (QbD) approach to match tablet glossiness.
    Mansuri N; Patel K; Mehta M; Vyas G; Reddy JP; Shah T; Steinbach D; Desai D
    Pharm Dev Technol; 2020 Oct; 25(8):1010-1017. PubMed ID: 32432492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Experiments to Study the Impact of Process Parameters on Droplet Size and Development of Non-Invasive Imaging Techniques in Tablet Coating.
    Dennison TJ; Smith J; Hofmann MP; Bland CE; Badhan RK; Al-Khattawi A; Mohammed AR
    PLoS One; 2016; 11(8):e0157267. PubMed ID: 27548263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging.
    Haaser M; Naelapää K; Gordon KC; Pepper M; Rantanen J; Strachan CJ; Taday PF; Zeitler JA; Rades T
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1095-102. PubMed ID: 23563103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.
    Teżyk M; Jakubowska E; Milanowski B; Lulek J
    Drug Dev Ind Pharm; 2017 Oct; 43(10):1626-1636. PubMed ID: 28481717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Critical Quality Attributes in Tablet Film Coating and Design Space Determination Using Pilot-Scale Experimental Data.
    Liu H; Meyer R; Flamm M; Wareham L; Metzger M; Tantuccio A; Yoon S
    AAPS PharmSciTech; 2021 Jan; 22(1):17. PubMed ID: 33389197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of an aqueous film coating process in a Bohle Lab-Coater, part 1: development of the model.
    Page S; Baumann KH; Kleinebudde P
    AAPS PharmSciTech; 2006 May; 7(2):E42. PubMed ID: 16796359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of an aqueous film coating process in a Bohle Lab-Coater: part 2: application of the model.
    Page S; Baumann KH; Kleinebudde P
    AAPS PharmSciTech; 2006 May; 7(2):E43. PubMed ID: 16796360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an automation system for a tablet coater.
    Ruotsalainen M; Heinämäki J; Rantanen J; Yliruusi J
    AAPS PharmSciTech; 2002; 3(2):E14. PubMed ID: 12916951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time monitoring of thermodynamic microenvironment in a pan coater.
    Pandey P; Bindra DS
    J Pharm Sci; 2013 Feb; 102(2):336-40. PubMed ID: 23161333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.
    Yoshino H; Hara Y; Dohi M; Yamashita K; Hakomori T; Kimura SI; Iwao Y; Itai S
    AAPS PharmSciTech; 2018 Apr; 19(3):1243-1253. PubMed ID: 29305693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating.
    Ho L; Müller R; Gordon KC; Kleinebudde P; Pepper M; Rades T; Shen Y; Taday PF; Zeitler JA
    Eur J Pharm Biopharm; 2009 Jan; 71(1):117-23. PubMed ID: 18647650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techniques to assess film coatings and evaluate film-coated products.
    Porter SC; Felton LA
    Drug Dev Ind Pharm; 2010 Feb; 36(2):128-42. PubMed ID: 20050727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process optimization of a novel immediate release film coating system using QbD principles.
    Teckoe J; Mascaro T; Farrell TP; Rajabi-Siahboomi AR
    AAPS PharmSciTech; 2013 Jun; 14(2):531-40. PubMed ID: 23483430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging.
    Niwa M; Hiraishi Y
    Int J Pharm; 2014 Jan; 461(1-2):342-50. PubMed ID: 24300215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring tablet surface roughness during the film coating process.
    Seitavuopio P; Heinämäki J; Rantanen J; Yliruusi J
    AAPS PharmSciTech; 2006 Apr; 7(2):E31. PubMed ID: 16796349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.