These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28945234)

  • 1. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein.
    Warner KD; Sjekloća L; Song W; Filonov GS; Jaffrey SR; Ferré-D'Amaré AR
    Nat Chem Biol; 2017 Nov; 13(11):1195-1201. PubMed ID: 28945234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding between G Quadruplexes at the Homodimer Interface of the Corn RNA Aptamer Strongly Activates Thioflavin T Fluorescence.
    Sjekloća L; Ferré-D'Amaré AR
    Cell Chem Biol; 2019 Aug; 26(8):1159-1168.e4. PubMed ID: 31178406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer.
    Filonov GS; Song W; Jaffrey SR
    Biochemistry; 2019 Mar; 58(12):1560-1564. PubMed ID: 30838859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fluorogenic RNA-Based Sensor Activated by Metabolite-Induced RNA Dimerization.
    Kim H; Jaffrey SR
    Cell Chem Biol; 2019 Dec; 26(12):1725-1731.e6. PubMed ID: 31631009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex.
    Song W; Filonov GS; Kim H; Hirsch M; Li X; Moon JD; Jaffrey SR
    Nat Chem Biol; 2017 Nov; 13(11):1187-1194. PubMed ID: 28945233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Living-Cell MicroRNA Imaging with Self-Assembling Fragments of Fluorescent Protein-Mimic RNA Aptamer.
    Gu Y; Huang LJ; Zhao W; Zhang TT; Cui MR; Yang XJ; Zhao XL; Chen HY; Xu JJ
    ACS Sens; 2021 Jun; 6(6):2339-2347. PubMed ID: 34028262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emerging structural complexity of G-quadruplex RNAs.
    Banco MT; Ferré-D'Amaré AR
    RNA; 2021 Apr; 27(4):390-402. PubMed ID: 33483368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif.
    Shelke SA; Shao Y; Laski A; Koirala D; Weissman BP; Fuller JR; Tan X; Constantin TP; Waggoner AS; Bruchez MP; Armitage BA; Piccirilli JA
    Nat Commun; 2018 Oct; 9(1):4542. PubMed ID: 30382099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore.
    Huang H; Suslov NB; Li NS; Shelke SA; Evans ME; Koldobskaya Y; Rice PA; Piccirilli JA
    Nat Chem Biol; 2014 Aug; 10(8):686-91. PubMed ID: 24952597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI.
    Fernandez-Millan P; Autour A; Ennifar E; Westhof E; Ryckelynck M
    RNA; 2017 Dec; 23(12):1788-1795. PubMed ID: 28939697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From fluorescent proteins to fluorogenic RNAs: Tools for imaging cellular macromolecules.
    Truong L; Ferré-D'Amaré AR
    Protein Sci; 2019 Aug; 28(8):1374-1386. PubMed ID: 31017335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Intracellular
    Li X; Mo L; Litke JL; Dey SK; Suter SR; Jaffrey SR
    J Am Chem Soc; 2020 Aug; 142(33):14117-14124. PubMed ID: 32698574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold.
    Truong L; Kooshapur H; Dey SK; Li X; Tjandra N; Jaffrey SR; Ferré-D'Amaré AR
    Nat Chem Biol; 2022 Feb; 18(2):191-198. PubMed ID: 34937911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable i-motif DNA folding topology for a pH-switched reversible molecular sensing device.
    Shi L; Peng P; Du Y; Li T
    Nucleic Acids Res; 2017 May; 45(8):4306-4314. PubMed ID: 28369541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing G-tetrad scaffolds within G-quadruplex forming aptamers for fluorescence detection strategies.
    Sproviero M; Manderville RA
    Chem Commun (Camb); 2014 Mar; 50(23):3097-9. PubMed ID: 24513595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach.
    Ketterer S; Fuchs D; Weber W; Meier M
    Nucleic Acids Res; 2015 Oct; 43(19):9564-72. PubMed ID: 26400180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based investigation of fluorogenic Pepper aptamer.
    Huang K; Chen X; Li C; Song Q; Li H; Zhu L; Yang Y; Ren A
    Nat Chem Biol; 2021 Dec; 17(12):1289-1295. PubMed ID: 34725509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Mechanism of RNA Mimics of Green Fluorescent Protein.
    You M; Jaffrey SR
    Annu Rev Biophys; 2015; 44():187-206. PubMed ID: 26098513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution.
    Filonov GS; Moon JD; Svensen N; Jaffrey SR
    J Am Chem Soc; 2014 Nov; 136(46):16299-308. PubMed ID: 25337688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and functional reselection of the Mango-III fluorogenic RNA aptamer.
    Trachman RJ; Autour A; Jeng SCY; Abdolahzadeh A; Andreoni A; Cojocaru R; Garipov R; Dolgosheina EV; Knutson JR; Ryckelynck M; Unrau PJ; Ferré-D'Amaré AR
    Nat Chem Biol; 2019 May; 15(5):472-479. PubMed ID: 30992561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.