BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 28945358)

  • 1. Lysines in the RNA Polymerase II C-Terminal Domain Contribute to TAF15 Fibril Recruitment.
    Janke AM; Seo DH; Rahmanian V; Conicella AE; Mathews KL; Burke KA; Mittal J; Fawzi NL
    Biochemistry; 2018 May; 57(17):2549-2563. PubMed ID: 28945358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Getting Access to Low-Complexity Domain Modifications.
    Schüller R; Eick D
    Trends Biochem Sci; 2016 Nov; 41(11):894-897. PubMed ID: 27283512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains.
    Kwon I; Kato M; Xiang S; Wu L; Theodoropoulos P; Mirzaei H; Han T; Xie S; Corden JL; McKnight SL
    Cell; 2013 Nov; 155(5):1049-1060. PubMed ID: 24267890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mRNA and protein levels of FUS, EWSR1, and TAF15 are upregulated in liposarcoma.
    Spitzer JI; Ugras S; Runge S; Decarolis P; Antonescu C; Tuschl T; Singer S
    Genes Chromosomes Cancer; 2011 May; 50(5):338-47. PubMed ID: 21344536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads.
    Murthy AC; Tang WS; Jovic N; Janke AM; Seo DH; Perdikari TM; Mittal J; Fawzi NL
    Nat Struct Mol Biol; 2021 Nov; 28(11):923-935. PubMed ID: 34759379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional characterization of the interaction between the influenza A virus RNA polymerase and the CTD of host RNA polymerase II.
    Keown J; Baazaoui A; Šebesta M; Štefl R; Carrique L; Fodor E; Grimes JM
    J Virol; 2024 May; 98(5):e0013824. PubMed ID: 38563748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removing quote marks from the RNA polymerase II CTD 'code'.
    Dieci G
    Biosystems; 2021 Sep; 207():104468. PubMed ID: 34216714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals.
    Shah N; Maqbool MA; Yahia Y; El Aabidine AZ; Esnault C; Forné I; Decker TM; Martin D; Schüller R; Krebs S; Blum H; Imhof A; Eick D; Andrau JC
    Mol Cell; 2018 Jan; 69(1):48-61.e6. PubMed ID: 29304333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-Terminal Domain of RNA Polymerase II Is a Multivalent Targeting Sequence that Supports Drosophila Development with Only Consensus Heptads.
    Lu F; Portz B; Gilmour DS
    Mol Cell; 2019 Mar; 73(6):1232-1242.e4. PubMed ID: 30765194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation.
    Kim MK; Nikodem VM
    Mol Cell Biol; 1999 Oct; 19(10):6833-44. PubMed ID: 10490622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription activation depends on the length of the RNA polymerase II C-terminal domain.
    Sawicka A; Villamil G; Lidschreiber M; Darzacq X; Dugast-Darzacq C; Schwalb B; Cramer P
    EMBO J; 2021 May; 40(9):e107015. PubMed ID: 33555055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of an essential interaction between influenza polymerase and Pol II CTD.
    Lukarska M; Fournier G; Pflug A; Resa-Infante P; Reich S; Naffakh N; Cusack S
    Nature; 2017 Jan; 541(7635):117-121. PubMed ID: 28002402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition from initiation to promoter proximal pausing requires the CTD of RNA polymerase II.
    Lux C; Albiez H; Chapman RD; Heidinger M; Meininghaus M; Brack-Werner R; Lang A; Ziegler M; Cremer T; Eick D
    Nucleic Acids Res; 2005; 33(16):5139-44. PubMed ID: 16157863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved N-terminal motif is required for complex formation between FUS, EWSR1, TAF15 and their oncogenic fusion proteins.
    Thomsen C; Grundevik P; Elias P; Ståhlberg A; Aman P
    FASEB J; 2013 Dec; 27(12):4965-74. PubMed ID: 23975937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intrinsic kinase activity of BRD4 spans its BD2-B-BID domains.
    Weissman JD; Singh AK; Devaiah BN; Schuck P; LaRue RC; Singer DS
    J Biol Chem; 2021 Nov; 297(5):101326. PubMed ID: 34688663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively.
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Nucleic Acids Res; 1993 Dec; 21(24):5609-15. PubMed ID: 8284205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-specific resonance assignments of human TAF15-RRM and TAF15-RRM-RanBP2.
    Kashyap M; Ganguly AK; Bhavesh NS
    Biomol NMR Assign; 2015 Apr; 9(1):103-6. PubMed ID: 24659459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.