These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28945372)

  • 61. Monomeric Copper(II) Sites Supported on Alumina Selectively Convert Methane to Methanol.
    Meyet J; Searles K; Newton MA; Wörle M; van Bavel AP; Horton AD; van Bokhoven JA; Copéret C
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9841-9845. PubMed ID: 31069914
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation.
    Vanelderen P; Snyder BE; Tsai ML; Hadt RG; Vancauwenbergh J; Coussens O; Schoonheydt RA; Sels BF; Solomon EI
    J Am Chem Soc; 2015 May; 137(19):6383-92. PubMed ID: 25914019
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Critical assessment of electron spin resonance studies on Cu(I)-NO complexes in Cu-ZSM-5 zeolites prepared by solid- and liquid-state ion exchange.
    Umamaheswari V; Hartmann M; Pöppl A
    J Phys Chem B; 2005 Oct; 109(42):19723-31. PubMed ID: 16853551
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of a tridentate ligand on the structure, electronic structure, and reactivity of the copper(I) nitrite complex: role of the conserved three-histidine ligand environment of the type-2 copper site in copper-containing nitrite reductases.
    Kujime M; Izumi C; Tomura M; Hada M; Fujii H
    J Am Chem Soc; 2008 May; 130(19):6088-98. PubMed ID: 18412340
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Low-Temperature Conversion of Methane to Methanol on CeO
    Zuo Z; Ramírez PJ; Senanayake SD; Liu P; Rodriguez JA
    J Am Chem Soc; 2016 Oct; 138(42):13810-13813. PubMed ID: 27718562
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electronic Structure of the [Cu
    Vogiatzis KD; Li G; Hensen EJM; Gagliardi L; Pidko EA
    J Phys Chem C Nanomater Interfaces; 2017 Oct; 121(40):22295-22302. PubMed ID: 29051794
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In situ XAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene.
    Mathisen K; Stockenhuber M; Nicholson DG
    Phys Chem Chem Phys; 2009 Jul; 11(26):5476-88. PubMed ID: 19551218
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites.
    Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA
    J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Importance of Methane Chemical Potential for Its Conversion to Methanol on Cu-Exchanged Mordenite.
    Zheng J; Lee I; Khramenkova E; Wang M; Peng B; Gutiérrez OY; Fulton JL; Camaioni DM; Khare R; Jentys A; Haller GL; Pidko EA; Sanchez-Sanchez M; Lercher JA
    Chemistry; 2020 Jun; 26(34):7563-7567. PubMed ID: 32092206
    [TBL] [Abstract][Full Text] [Related]  

  • 70. H
    Xu R; Liu N; Dai C; Li Y; Zhang J; Wu B; Yu G; Chen B
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16634-16640. PubMed ID: 33982395
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Effect of the Active-Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol.
    Sushkevich VL; Palagin D; van Bokhoven JA
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8906-8910. PubMed ID: 29756661
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation.
    Alayon EM; Nachtegaal M; Bodi A; Ranocchiari M; van Bokhoven JA
    Phys Chem Chem Phys; 2015 Mar; 17(12):7681-93. PubMed ID: 25732559
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSM-5 Catalysts.
    Armstrong RD; Peneau V; Ritterskamp N; Kiely CJ; Taylor SH; Hutchings GJ
    Chemphyschem; 2018 Feb; 19(4):469-478. PubMed ID: 29193556
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.
    Adebajo MO; Long MA; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Performance of density functional theory for describing hetero-metallic active-site motifs for methane-to-methanol conversion in metal-exchanged zeolites.
    Dandu NK; Adeyiga O; Panthi D; Bird SA; Odoh SO
    J Comput Chem; 2018 Dec; 39(32):2667-2678. PubMed ID: 30379335
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Binary Au-Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature.
    Luo L; Gong Z; Xu Y; Ma J; Liu H; Xing J; Tang J
    J Am Chem Soc; 2022 Jan; 144(2):740-750. PubMed ID: 34928583
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol.
    Sushkevich VL; Artsiusheuski M; Klose D; Jeschke G; van Bokhoven JA
    Angew Chem Int Ed Engl; 2021 Jul; 60(29):15944-15953. PubMed ID: 33905160
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Catalytic conversion of methane to methanol on Cu-SSZ-13 using N
    Ipek B; Lobo RF
    Chem Commun (Camb); 2016 Nov; 52(91):13401-13404. PubMed ID: 27790665
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis.
    Zhou Y; Zhang L; Wang W
    Nat Commun; 2019 Jan; 10(1):506. PubMed ID: 30705278
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A theoretical study of nitric oxide adsorption and dissociation on copper-exchanged zeolites SSZ-13 and SAPO-34: the impact of framework acid-base properties.
    Uzunova EL; Mikosch H
    Phys Chem Chem Phys; 2016 Apr; 18(16):11233-42. PubMed ID: 27053488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.