These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28945384)

  • 1. Surface Plasmon Polariton Interference in Gold Nanoplates.
    Beane G; Yu K; Devkota T; Johns P; Brown B; Wang GP; Hartland G
    J Phys Chem Lett; 2017 Oct; 8(19):4935-4941. PubMed ID: 28945384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of substrate discontinuities on the propagating surface plasmon polariton modes in gold nanobars.
    Johns P; Yu K; Devadas MS; Li Z; Major TA; Hartland GV
    Nanoscale; 2014 Nov; 6(23):14289-96. PubMed ID: 25321926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths.
    Kaya S; Weeber JC; Zacharatos F; Hassan K; Bernardin T; Cluzel B; Fatome J; Finot C
    Opt Express; 2013 Sep; 21(19):22269-84. PubMed ID: 24104119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong Exciton-Plasmon Coupling in Silver Nanowire Nanocavities.
    Beane G; Brown BS; Johns P; Devkota T; Hartland GV
    J Phys Chem Lett; 2018 Apr; 9(7):1676-1681. PubMed ID: 29547298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral and mode properties of surface plasmon polariton waveguides studied by near-field excitation and leakage-mode radiation measurement.
    Pan MY; Lin EH; Wang L; Wei PK
    Nanoscale Res Lett; 2014; 9(1):430. PubMed ID: 25177228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-particle Correlation Study: Polarization-dependent Differential Interference Contrast Imaging of Two-dimensional Gold Nanoplates.
    Lee J; Ha JW
    Anal Sci; 2019 Nov; 35(11):1237-1241. PubMed ID: 31353337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering.
    Mehfuz R; Maqsood MW; Chau KJ
    Opt Express; 2010 Aug; 18(17):18206-16. PubMed ID: 20721210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Resonances in the Transmission of Surface Plasmon Polaritons between Nanostructures.
    Johns P; Yu K; Devadas MS; Hartland GV
    ACS Nano; 2016 Mar; 10(3):3375-81. PubMed ID: 26866536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates.
    Luo S; Yang H; Yang Y; Zhao D; Chen X; Qiu M; Li Q
    Sci Rep; 2015 Aug; 5():13424. PubMed ID: 26302955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discontinuity induced angular distribution of photon plasmon coupling.
    Brissinger D; Lereu AL; Salomon L; Charvolin T; Cluzel B; Dumas C; Passian A; de Fornel F
    Opt Express; 2011 Aug; 19(18):17750-7. PubMed ID: 21935142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Overlapped Plasmon Modes in a Gold Hexagonal Plate Revealed by Three-Dimensional Near-Field Optical Microscopy.
    Matsuura T; Imaeda K; Hasegawa S; Suzuki H; Imura K
    J Phys Chem Lett; 2019 Feb; 10(4):819-824. PubMed ID: 30735394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM.
    Word RC; Fitzgerald JP; Könenkamp R
    Opt Express; 2013 Dec; 21(25):30507-20. PubMed ID: 24514628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of dispersion imaging for grating-coupled surface plasmon resonance sensing of multilayer Langmuir-Blodgett films.
    Yeh WH; Hillier AC
    Anal Chem; 2013 Apr; 85(8):4080-6. PubMed ID: 23521419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit.
    Maqsood MW; Mehfuz R; Chau KJ
    Opt Express; 2010 Oct; 18(21):21669-77. PubMed ID: 20941066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon-like modes on structured perfectly conducting surfaces.
    Lan YC; Chern RL
    Opt Express; 2006 Nov; 14(23):11339-47. PubMed ID: 19529551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing.
    Beeram SR; Zamborini FP
    ACS Nano; 2010 Jul; 4(7):3633-46. PubMed ID: 20575510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental observation of the short-range surface plasmon polariton mode and its longitudinal adiabatic compression in a metallic wedge.
    Tugchin BN; Janunts N; Steinert M; Fasold S; Pertsch T
    Opt Express; 2021 Nov; 29(23):37161-37174. PubMed ID: 34808794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-field characterization of bound plasmonic modes in metal strip waveguides.
    Zenin VA; Malureanu R; Radko IP; Lavrinenko AV; Bozhevolnyi SI
    Opt Express; 2016 Mar; 24(5):4582-4590. PubMed ID: 29092285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the Frequency Range of Surface Plasmon Polariton Mode with Meta-Material.
    Zhou F; Liu F; Xiao L; Cui K; Feng X; Zhang W; Huang Y
    Nanomicro Lett; 2017; 9(1):9. PubMed ID: 30460306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and Dynamic Near-Field Measurements of High-Order Plasmon Modes Induced in a Gold Triangular Nanoplate.
    Imaeda K; Hasegawa S; Imura K
    J Phys Chem Lett; 2018 Jul; 9(14):4075-4081. PubMed ID: 29985621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.