BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28945432)

  • 1. Using Flash Nanoprecipitation To Produce Highly Potent and Stable Cellax Nanoparticles from Amphiphilic Polymers Derived from Carboxymethyl Cellulose, Polyethylene Glycol, and Cabazitaxel.
    Bteich J; McManus SA; Ernsting MJ; Mohammed MZ; Prud'homme RK; Sokoll KK
    Mol Pharm; 2017 Nov; 14(11):3998-4007. PubMed ID: 28945432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer.
    Hoang B; Ernsting MJ; Tang WS; Bteich J; Undzys E; Kiyota T; Li SD
    Cancer Lett; 2017 Dec; 410():169-179. PubMed ID: 28965854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Update of a Carboxymethylcellulose-PEG Conjugate Platform for Delivery of Insoluble Cytotoxic Agents to Tumors.
    Yang Y; Bteich J; Li SD
    AAPS J; 2017 Mar; 19(2):386-396. PubMed ID: 27873118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic modification of carboxymethylcellulose and use thereof to prepare a nanoparticle forming conjugate of docetaxel for enhanced cytotoxicity against cancer cells.
    Ernsting MJ; Tang WL; MacCallum N; Li SD
    Bioconjug Chem; 2011 Dec; 22(12):2474-86. PubMed ID: 22014112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models.
    Ernsting MJ; Tang WL; MacCallum NW; Li SD
    Biomaterials; 2012 Feb; 33(5):1445-54. PubMed ID: 22079003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle Formulation Derived from Carboxymethyl Cellulose, Polyethylene Glycol, and Cabazitaxel for Chemotherapy Delivery to the Brain.
    Bteich J; Ernsting MJ; Mohammed M; Kiyota T; McKee TD; Trikha M; Lowman HB; Sokoll KK
    Bioconjug Chem; 2018 Jun; 29(6):2009-2020. PubMed ID: 29734804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle.
    Ernsting MJ; Hoang B; Lohse I; Undzys E; Cao P; Do T; Gill B; Pintilie M; Hedley D; Li SD
    J Control Release; 2015 May; 206():122-30. PubMed ID: 25804872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-targeted drug delivery using MR-contrasted docetaxel - carboxymethylcellulose nanoparticles.
    Ernsting MJ; Foltz WD; Undzys E; Tagami T; Li SD
    Biomaterials; 2012 May; 33(15):3931-41. PubMed ID: 22369962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flash NanoPrecipitation for the Encapsulation of Hydrophobic and Hydrophilic Compounds in Polymeric Nanoparticles.
    Markwalter CE; Pagels RF; Wilson BK; Ristroph KD; Prud'homme RK
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Delivery of Cabazitaxel by Conjugation to Albumin-PEG-folate Nanoparticles Using a Cysteine-acrylate Linker and Simple Synthesis Conditions.
    Khoeeniha MK; Esfandyari-Manesh M; Behrouz H; Amini M; Varnamkhasti BS; Atyabi F; Dinarvand R
    Curr Drug Deliv; 2017; 14(8):1120-1129. PubMed ID: 27875950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling poly(ethylene glycol)-block-polylactide-cabazitaxel conjugate nanoparticles for anticancer therapy with high efficacy and low in vivo toxicity.
    Shuai Q; Zhao G; Lian X; Wan J; Cen B; Zhang W; Liu J; Su W; Wang H
    Int J Pharm; 2020 Jan; 574():118879. PubMed ID: 31770581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure.
    Zhu Z
    Mol Pharm; 2014 Mar; 11(3):776-86. PubMed ID: 24484077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.
    Tam YT; To KK; Chow AH
    Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Characterization of Size-Controlled Nanoparticles for High-Loading λ-Cyhalothrin Delivery through Flash Nanoprecipitation.
    Chen K; Fu Z; Wang M; Lv Y; Wang C; Shen Y; Wang Y; Cui H; Guo X
    J Agric Food Chem; 2018 Aug; 66(31):8246-8252. PubMed ID: 30016093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.
    Tao J; Chow SF; Zheng Y
    Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein-mediated multidrug resistance.
    Roy A; Murakami M; Ernsting MJ; Hoang B; Undzys E; Li SD
    Mol Pharm; 2014 Aug; 11(8):2592-9. PubMed ID: 24564177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism.
    Hoang B; Ernsting MJ; Roy A; Murakami M; Undzys E; Li SD
    Biomaterials; 2015 Aug; 59():66-76. PubMed ID: 25956852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization.
    Chow SF; Wan KY; Cheng KK; Wong KW; Sun CC; Baum L; Chow AH
    Eur J Pharm Biopharm; 2015 Aug; 94():436-49. PubMed ID: 26143368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability.
    Zhu Z
    Biomaterials; 2013 Dec; 34(38):10238-48. PubMed ID: 24070569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.