These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28945586)

  • 1. Metabolic Effects Induced by a Kinematically Compatible Hip Exoskeleton During STS.
    Junius K; Lefeber N; Swinnen E; Vanderborght B; Lefeber D
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1399-1409. PubMed ID: 28945586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the Energy Cost of Human Running Using an Unpowered Exoskeleton.
    Nasiri R; Ahmadi A; Ahmadabadi MN
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2026-2032. PubMed ID: 30281466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking.
    Baltrusch SJ; van Dieën JH; Bruijn SM; Koopman AS; van Bennekom CAM; Houdijk H
    Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sit-to-Stand Trainer: An Apparatus for Training "Normal-Like" Sit to Stand Movement.
    Matjacic Z; Zadravec M; Oblak J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):639-49. PubMed ID: 26068547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a Back Exoskeleton During Industrial and Functional Tasks-Effects on Muscle Activity, Posture, Performance, Usability, and Wearer Discomfort in a Laboratory Trial.
    Luger T; Bär M; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2023 Feb; 65(1):5-21. PubMed ID: 33861139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting.
    Baltrusch SJ; van Dieën JH; Koopman AS; Näf MB; Rodriguez-Guerrero C; Babič J; Houdijk H
    Eur J Appl Physiol; 2020 Feb; 120(2):401-412. PubMed ID: 31828480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint.
    Beil J; Marquardt C; Asfour T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1349-1355. PubMed ID: 28814008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation.
    Junius K; Degelaen M; Lefeber N; Swinnen E; Vanderborght B; Lefeber D
    Appl Bionics Biomech; 2017; 2017():5813154. PubMed ID: 28790799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of assistance timing on metabolic cost, assistance power, and gait parameters for a hip-type exoskeleton.
    Lee J; Seo K; Lim B; Jang J; Kim K; Choi H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():498-504. PubMed ID: 28813869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements.
    Yoshioka S; Nagano A; Himeno R; Fukashiro S
    Biomed Eng Online; 2007 Jul; 6():26. PubMed ID: 17608922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the edge between soft and rigid: an assistive shoulder exoskeleton with hyper-redundant kinematics.
    Tiseni L; Xiloyannis M; Chiaradia D; Lotti N; Solazzi M; van der Kooij H; Frisoli A; Masia L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():618-624. PubMed ID: 31374699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.