These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28945706)

  • 1. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1.
    Ringer P; Weißl A; Cost AL; Freikamp A; Sabass B; Mehlich A; Tramier M; Rief M; Grashoff C
    Nat Methods; 2017 Nov; 14(11):1090-1096. PubMed ID: 28945706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-activatable coating enables high-resolution cellular force imaging directly on regular cell culture surfaces.
    Sarkar A; Zhao Y; Wang Y; Wang X
    Phys Biol; 2018 Jun; 15(6):065002. PubMed ID: 29785968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular rigidity sensing by talin isoform-specific mechanical linkages.
    Austen K; Ringer P; Mehlich A; Chrostek-Grashoff A; Kluger C; Klingner C; Sabass B; Zent R; Rief M; Grashoff C
    Nat Cell Biol; 2015 Dec; 17(12):1597-606. PubMed ID: 26523364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo.
    Lemke SB; Weidemann T; Cost AL; Grashoff C; Schnorrer F
    PLoS Biol; 2019 Mar; 17(3):e3000057. PubMed ID: 30917109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed Molecular Tension Sensor Measurements Using PIE-FLIM.
    Windgasse L; Grashoff C
    Methods Mol Biol; 2023; 2600():221-237. PubMed ID: 36587101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Piconewton Force Awakens: Quantifying Mechanics in Cells.
    Freikamp A; Cost AL; Grashoff C
    Trends Cell Biol; 2016 Nov; 26(11):838-847. PubMed ID: 27544876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically Encoded FRET-Based Tension Sensors.
    Cost AL; Khalaji S; Grashoff C
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e85. PubMed ID: 30865383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Förster resonance energy transfer efficiency measurements on vinculin tension sensors at focal adhesions using a simple and cost-effective setup.
    Dubois C; Houel-Renault L; Erard M; Boustany NN; Westbrook N
    J Biomed Opt; 2023 Aug; 28(8):082808. PubMed ID: 37441563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity.
    Kumar A; Ouyang M; Van den Dries K; McGhee EJ; Tanaka K; Anderson MD; Groisman A; Goult BT; Anderson KI; Schwartz MA
    J Cell Biol; 2016 May; 213(3):371-83. PubMed ID: 27161398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable molecular tension sensors reveal extension-based control of vinculin loading.
    LaCroix AS; Lynch AD; Berginski ME; Hoffman BD
    Elife; 2018 Jul; 7():. PubMed ID: 30024378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating piconewton forces in cells by FRET-based molecular force microscopy.
    Freikamp A; Mehlich A; Klingner C; Grashoff C
    J Struct Biol; 2017 Jan; 197(1):37-42. PubMed ID: 26980477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Simulations Suggest a Force-Dependent Mechanism of Vinculin Activation.
    Sun L; Noel JK; Levine H; Onuchic JN
    Biophys J; 2017 Oct; 113(8):1697-1710. PubMed ID: 29045864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-Dependent Regulation of Talin-KANK1 Complex at Focal Adhesions.
    Yu M; Le S; Ammon YC; Goult BT; Akhmanova A; Yan J
    Nano Lett; 2019 Sep; 19(9):5982-5990. PubMed ID: 31389241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-mechanical characterization of tension-sensitive helix bundles in talin rod.
    Maki K; Nakao N; Adachi T
    Biochem Biophys Res Commun; 2017 Mar; 484(2):372-377. PubMed ID: 28131835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics.
    Grashoff C; Hoffman BD; Brenner MD; Zhou R; Parsons M; Yang MT; McLean MA; Sligar SG; Chen CS; Ha T; Schwartz MA
    Nature; 2010 Jul; 466(7303):263-6. PubMed ID: 20613844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vinculin controls talin engagement with the actomyosin machinery.
    Atherton P; Stutchbury B; Wang DY; Jethwa D; Tsang R; Meiler-Rodriguez E; Wang P; Bate N; Zent R; Barsukov IL; Goult BT; Critchley DR; Ballestrem C
    Nat Commun; 2015 Dec; 6():10038. PubMed ID: 26634421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular tension sensors report forces generated by single integrin molecules in living cells.
    Morimatsu M; Mekhdjian AH; Adhikari AS; Dunn AR
    Nano Lett; 2013 Sep; 13(9):3985-9. PubMed ID: 23859772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Molecular Tension Sensor Based on Bioluminescence Resonance Energy Transfer (BRET).
    Aird EJ; Tompkins KJ; Ramirez MP; Gordon WR
    ACS Sens; 2020 Jan; 5(1):34-39. PubMed ID: 31872754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Dot-Based FRET Nanosensors for Talin-Membrane Assembly and Mechanosensing.
    Ntadambanya A; Pernier J; David V; Susumu K; Medintz IL; Collot M; Klymchenko A; Hildebrandt N; Le Potier I; Le Clainche C; Cardoso Dos Santos M
    Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202409852. PubMed ID: 39007225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction, imaging, and analysis of FRET-based tension sensors in living cells.
    LaCroix AS; Rothenberg KE; Berginski ME; Urs AN; Hoffman BD
    Methods Cell Biol; 2015; 125():161-86. PubMed ID: 25640429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.