BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28945910)

  • 1. Natural and Artificial Intelligence in Neurosurgery: A Systematic Review.
    Senders JT; Arnaout O; Karhade AV; Dasenbrock HH; Gormley WB; Broekman ML; Smith TR
    Neurosurgery; 2018 Aug; 83(2):181-192. PubMed ID: 28945910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review.
    Buchlak QD; Esmaili N; Leveque JC; Farrokhi F; Bennett C; Piccardi M; Sethi RK
    Neurosurg Rev; 2020 Oct; 43(5):1235-1253. PubMed ID: 31422572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review.
    Senders JT; Staples PC; Karhade AV; Zaki MM; Gormley WB; Broekman MLD; Smith TR; Arnaout O
    World Neurosurg; 2018 Jan; 109():476-486.e1. PubMed ID: 28986230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An introduction and overview of machine learning in neurosurgical care.
    Senders JT; Zaki MM; Karhade AV; Chang B; Gormley WB; Broekman ML; Smith TR; Arnaout O
    Acta Neurochir (Wien); 2018 Jan; 160(1):29-38. PubMed ID: 29134342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurosurgical skills analysis by machine learning models: systematic review.
    Titov O; Bykanov A; Pitskhelauri D
    Neurosurg Rev; 2023 May; 46(1):121. PubMed ID: 37191734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Systematic Review on Machine Learning in Neurosurgery: The Future of Decision-Making in Patient Care.
    Celtikci E
    Turk Neurosurg; 2018; 28(2):167-173. PubMed ID: 28481395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does Artificial Intelligence Outperform Natural Intelligence in Interpreting Musculoskeletal Radiological Studies? A Systematic Review.
    Groot OQ; Bongers MER; Ogink PT; Senders JT; Karhade AV; Bramer JAM; Verlaan JJ; Schwab JH
    Clin Orthop Relat Res; 2020 Dec; 478(12):2751-2764. PubMed ID: 32740477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pituitary Tumors in the Computational Era, Exploring Novel Approaches to Diagnosis, and Outcome Prediction with Machine Learning.
    Soldozy S; Farzad F; Young S; Yağmurlu K; Norat P; Sokolowski J; Park MS; Jane JA; Syed HR
    World Neurosurg; 2021 Feb; 146():315-321.e1. PubMed ID: 32711142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promises and Perils of Artificial Intelligence in Neurosurgery.
    Panesar SS; Kliot M; Parrish R; Fernandez-Miranda J; Cagle Y; Britz GW
    Neurosurgery; 2020 Jul; 87(1):33-44. PubMed ID: 31748800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Brief History of Machine Learning in Neurosurgery.
    Schilling AT; Shah PP; Feghali J; Jimenez AE; Azad TD
    Acta Neurochir Suppl; 2022; 134():245-250. PubMed ID: 34862547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence in Clinical Neurosurgery: More than Machinery.
    Tewarie IA; Hulsbergen AFC; Gormley WB; Peul WC; Broekman MLD
    World Neurosurg; 2021 May; 149():302-303. PubMed ID: 33940691
    [No Abstract]   [Full Text] [Related]  

  • 12. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.
    Tonutti M; Gras G; Yang GZ
    Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence in Neurosurgery: a Systematic Review Using Topic Modeling. Part I: Major Research Areas.
    Danilov GV; Shifrin MA; Kotik KV; Ishankulov TA; Orlov YN; Kulikov AS; Potapov AA
    Sovrem Tekhnologii Med; 2021; 12(5):106-112. PubMed ID: 34796011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality and augmented reality in the management of intracranial tumors: A review.
    Lee C; Wong GKC
    J Clin Neurosci; 2019 Apr; 62():14-20. PubMed ID: 30642663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning and Artificial Intelligence in Neurosurgery: Status, Prospects, and Challenges.
    Dagi TF; Barker FG; Glass J
    Neurosurgery; 2021 Jul; 89(2):133-142. PubMed ID: 34015816
    [No Abstract]   [Full Text] [Related]  

  • 16. Virtual Reality-Based Simulators for Cranial Tumor Surgery: A Systematic Review.
    Mazur T; Mansour TR; Mugge L; Medhkour A
    World Neurosurg; 2018 Feb; 110():414-422. PubMed ID: 29198889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic trajectory planning of DBS neurosurgery from multi-modal MRI datasets.
    Bériault S; Al Subaie F; Mok K; Sadikot AF; Pike GB
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):259-66. PubMed ID: 22003625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning for outcome prediction of neurosurgical aneurysm treatment: Current methods and future directions.
    Velagapudi L; Saiegh FA; Swaminathan S; Mouchtouris N; Khanna O; Sabourin V; Gooch MR; Herial N; Tjoumakaris S; Rosenwasser RH; Jabbour P
    Clin Neurol Neurosurg; 2023 Jan; 224():107547. PubMed ID: 36481326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Applications of Artificial Intelligence in Bariatric Surgery.
    Bellini V; Valente M; Turetti M; Del Rio P; Saturno F; Maffezzoni M; Bignami E
    Obes Surg; 2022 Aug; 32(8):2717-2733. PubMed ID: 35616768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence in orthopedic implant model classification: a systematic review.
    Ren M; Yi PH
    Skeletal Radiol; 2022 Feb; 51(2):407-416. PubMed ID: 34351457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.