These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28946050)

  • 1. Early biotic stress detection in tomato (Solanum lycopersicum) by BVOC emissions.
    Kasal-Slavik T; Eschweiler J; Kleist E; Mumm R; Goldbach HE; Schouten A; Wildt J
    Phytochemistry; 2017 Dec; 144():180-188. PubMed ID: 28946050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.
    Jansen RM; Miebach M; Kleist E; van Henten EJ; Wildt J
    Plant Biol (Stuttg); 2009 Nov; 11(6):859-68. PubMed ID: 19796363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse responses of wild and cultivated tomato to BABA, oligandrin and Oidium neolycopersici infection.
    Satková P; Starý T; Plešková V; Zapletalová M; Kašparovský T; Cincalová-Kubienová L; Luhová L; Mieslerová B; Mikulík J; Lochman J; Petrivalský M
    Ann Bot; 2017 Mar; 119(5):829-840. PubMed ID: 27660055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Cucumber Mosaic Virus and Its 2a and 2b Proteins on Interactions of Tomato Plants with the Aphid Vectors
    Arinaitwe W; Guyon A; Tungadi TD; Cunniffe NJ; Rhee SJ; Khalaf A; Mhlanga NM; Pate AE; Murphy AM; Carr JP
    Viruses; 2022 Aug; 14(8):. PubMed ID: 36016326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In the tripartite combination Botrytis cinerea-Arabidopsis-Eurydema oleracea, the fungal pathogen alters the plant-insect interaction via jasmonic acid signalling activation and inducible plant-emitted volatiles.
    Ederli L; Salerno G; Quaglia M
    J Plant Res; 2021 May; 134(3):523-533. PubMed ID: 33738682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit
    Lin Y; Ruan H; Akutse KS; Lai B; Lin Y; Hou Y; Zhong F
    J Agric Food Chem; 2019 Dec; 67(49):13706-13717. PubMed ID: 31693347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants.
    López-Galiano MJ; González-Hernández AI; Crespo-Salvador O; Rausell C; Real MD; Escamilla M; Camañes G; García-Agustín P; González-Bosch C; García-Robles I
    Plant Cell Rep; 2018 Jan; 37(1):167-176. PubMed ID: 29079899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single- versus Multiple-Pest Infestation Affects Differently the Biochemistry of Tomato (Solanum lycopersicum 'Ailsa Craig').
    Errard A; Ulrichs C; Kühne S; Mewis I; Drungowski M; Schreiner M; Baldermann S
    J Agric Food Chem; 2015 Nov; 63(46):10103-11. PubMed ID: 26507319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens.
    Worrall D; Holroyd GH; Moore JP; Glowacz M; Croft P; Taylor JE; Paul ND; Roberts MR
    New Phytol; 2012 Feb; 193(3):770-778. PubMed ID: 22142268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum.
    Degenhardt DC; Refi-Hind S; Stratmann JW; Lincoln DE
    Phytochemistry; 2010 Dec; 71(17-18):2024-37. PubMed ID: 20970815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum).
    Ángeles López YI; Martínez-Gallardo NA; Ramírez-Romero R; López MG; Sánchez-Hernández C; Délano-Frier JP
    J Chem Ecol; 2012 Nov; 38(11):1376-86. PubMed ID: 23085855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling.
    Hu Z; Shao S; Zheng C; Sun Z; Shi J; Yu J; Qi Z; Shi K
    Planta; 2018 May; 247(5):1217-1227. PubMed ID: 29445868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea.
    Scalschi L; Sanmartín M; Camañes G; Troncho P; Sánchez-Serrano JJ; García-Agustín P; Vicedo B
    Plant J; 2015 Jan; 81(2):304-15. PubMed ID: 25407262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems.
    Lacrampe N; Colombié S; Dumont D; Nicot P; Lecompte F; Lugan R
    Planta; 2023 Jan; 257(2):41. PubMed ID: 36680621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.
    Liu B; Hong YB; Zhang YF; Li XH; Huang L; Zhang HJ; Li DY; Song FM
    Plant Sci; 2014 Oct; 227():145-56. PubMed ID: 25219316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SA-dependent defense pathway is active against different pathogens in tomato and tobacco.
    Achuo AE; Audenaert K; Meziane H; Höfte M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):149-57. PubMed ID: 12701417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB
    Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways.
    Shu P; Zhang S; Li Y; Wang X; Yao L; Sheng J; Shen L
    Plant Physiol Biochem; 2021 Sep; 166():1-9. PubMed ID: 34087740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.