These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28946052)

  • 21. Hydrogel-elastomer composite biomaterials: 3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks.
    Peng HT; Martineau L; Shek PN
    J Mater Sci Mater Med; 2008 Mar; 19(3):997-1007. PubMed ID: 17665128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.
    Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ
    Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical viability of a thermoplastic elastomer hydrogel as a soft tissue replacement material.
    Fischenich KM; Lewis JT; Bailey TS; Haut Donahue TL
    J Mech Behav Biomed Mater; 2018 Mar; 79():341-347. PubMed ID: 29425534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatible In Situ Polymerization of Multipurpose Polyacrylamide-Based Hydrogels on Skin via Silver Ion Catalyzation.
    Ji H; Song X; Cheng H; Luo L; Huang J; He C; Yin J; Zhao W; Qiu L; Zhao C
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31079-31089. PubMed ID: 32571008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyacrylamide hydrogel differences: getting rid of the confusion.
    Narins RS; Schmidt R
    J Drugs Dermatol; 2011 Dec; 10(12):1370-5. PubMed ID: 22134560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
    Naghizadeh Z; Karkhaneh A; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tough Ordered Mesoporous Elastomeric Biomaterials Formed at Ambient Conditions.
    Rajasekharan AK; Gyllensten C; Blomstrand E; Liebi M; Andersson M
    ACS Nano; 2020 Jan; 14(1):241-254. PubMed ID: 31846286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interpenetrating polymer networks for biological applications.
    Dror M; Elsabee MZ; Berry GC
    Biomater Med Devices Artif Organs; 1979; 7(1):31-9. PubMed ID: 454781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adhesion between highly stretchable materials.
    Tang J; Li J; Vlassak JJ; Suo Z
    Soft Matter; 2016 Jan; 12(4):1093-9. PubMed ID: 26573427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheology and morphology of pristine graphene/polyacrylamide gels.
    Das S; Irin F; Ma L; Bhattacharia SK; Hedden RC; Green MJ
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8633-40. PubMed ID: 23915342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization.
    Jeong GT; Lee KM; Yang HS; Park SH; Park JH; Sunwoo C; Ryu HW; Kim D; Lee WT; Kim HS; Cha WS; Park DH
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):935-46. PubMed ID: 18478446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Investigation of surgical applicability of acryl-based tissue expanders].
    Varga J; Janovák L; Varga E; Eros G; Dékány I; Kemény L
    Magy Seb; 2010 Feb; 63(1):16-22. PubMed ID: 20156789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, characterization and in vitro degradation of a biodegradable elastomer.
    Younes HM; Bravo-Grimaldo E; Amsden BG
    Biomaterials; 2004 Oct; 25(22):5261-9. PubMed ID: 15110477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical characterization of soft biomaterials: which time and spatial scale to choose?
    Krivega ES; Kotova SL; Timashev PS; Efremov YM
    Soft Matter; 2024 Jul; 20(26):5095-5104. PubMed ID: 38888165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.