These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 28946297)
21. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods. Wray D; Ramaswamy HS J Food Sci; 2015 Dec; 80(12):E2792-802. PubMed ID: 26565564 [TBL] [Abstract][Full Text] [Related]
22. Qualitative and Quantitative Evaluation of Heat-Induced Changes in Polyphenols and Antioxidant Capacity in Michalska A; Wojdyło A; Majerska J; Lech K; Brzezowska J Molecules; 2019 Aug; 24(16):. PubMed ID: 31430992 [TBL] [Abstract][Full Text] [Related]
23. Physical and functional properties of spray-dried powders from blackcurrant juice and extracts obtained from the waste of juice processing. Archaina D; Leiva G; Salvatori D; Schebor C Food Sci Technol Int; 2018 Jan; 24(1):78-86. PubMed ID: 28899204 [TBL] [Abstract][Full Text] [Related]
24. Production of ‘kedondong’ (Spondias cytherea Sonnerat) powder as affected by different drying methods. Chang LS; Lau KQ; Tan CP; Yusof YA; Nyam KL; Pui LP Acta Sci Pol Technol Aliment; 2021; 20(4):417-421. PubMed ID: 34724366 [TBL] [Abstract][Full Text] [Related]
25. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Wojdyło A; Figiel A; Oszmiański J J Agric Food Chem; 2009 Feb; 57(4):1337-43. PubMed ID: 19170638 [TBL] [Abstract][Full Text] [Related]
26. Effect of mixing time, freeze-drying and baking on phenolics, anthocyanins and antioxidant capacity of raspberry juice during processing of muffins. Rosales-Soto MU; Powers JR; Alldredge JR J Sci Food Agric; 2012 May; 92(7):1511-8. PubMed ID: 22228299 [TBL] [Abstract][Full Text] [Related]
27. Change of bioactive properties, spectral reflectance, and color characteristics of European cranberry (Viburnum opulus L.) juice as affected by foam mat drying technique. Günaydın S; Çetin N; Sağlam C; Karaman K Sci Rep; 2024 Oct; 14(1):22974. PubMed ID: 39363007 [TBL] [Abstract][Full Text] [Related]
28. Maltodextrin and Gum Arabic-Based Microencapsulation Methods for Anthocyanin Preservation in Juçara Palm (Euterpe edulis Martius) Fruit Pulp. Mazuco RA; Cardoso PMM; Bindaco ÉS; Scherer R; Castilho RO; Faraco AAG; Ruas FG; Oliveira JP; Guimarães MCC; de Andrade TU; Lenz D; Braga FC; Endringer DC Plant Foods Hum Nutr; 2018 Sep; 73(3):209-215. PubMed ID: 29956110 [TBL] [Abstract][Full Text] [Related]
29. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Wojdyło A; Lech K; Nowicka P Molecules; 2020 Nov; 25(23):. PubMed ID: 33255650 [TBL] [Abstract][Full Text] [Related]
30. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). Tseng A; Zhao Y J Food Sci; 2012 Sep; 77(9):H192-201. PubMed ID: 22908851 [TBL] [Abstract][Full Text] [Related]
31. Encapsulation of black carrot juice using spray and freeze drying. Murali S; Kar A; Mohapatra D; Kalia P Food Sci Technol Int; 2015 Dec; 21(8):604-12. PubMed ID: 25367889 [TBL] [Abstract][Full Text] [Related]
32. The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Turkiewicz IP; Wojdyło A; Tkacz K; Lech K; Michalska-Ciechanowska A; Nowicka P Food Chem; 2020 Apr; 323():126830. PubMed ID: 32334310 [TBL] [Abstract][Full Text] [Related]
33. Food-compatible method for the efficient extraction and stabilization of cranberry pomace polyphenols. Roopchand DE; Krueger CG; Moskal K; Fridlender B; Lila MA; Raskin I Food Chem; 2013 Dec; 141(4):3664-9. PubMed ID: 23993534 [TBL] [Abstract][Full Text] [Related]
34. The Microencapsulation of Maqui ( Fredes C; Becerra C; Parada J; Robert P Molecules; 2018 May; 23(5):. PubMed ID: 29783783 [TBL] [Abstract][Full Text] [Related]
35. Comparison of berry juice concentrates and pomaces and alternative plant proteins to produce spray dried protein-polyphenol food ingredients. Hoskin RT; Xiong J; Lila MA Food Funct; 2019 Oct; 10(10):6286-6299. PubMed ID: 31524913 [TBL] [Abstract][Full Text] [Related]
36. Effect of the novel radiant zone drying method on anthocyanins and phenolics of three blueberry liquids. Chakraborty M; Savarese M; Harbertson E; Harbertson J; Ringer KL J Agric Food Chem; 2010 Jan; 58(1):324-30. PubMed ID: 19954224 [TBL] [Abstract][Full Text] [Related]
37. Estimation of kinetic parameters of anthocyanins and color degradation in vitamin C fortified cranberry juice during storage. Roidoung S; Dolan KD; Siddiq M Food Res Int; 2017 Apr; 94():29-35. PubMed ID: 28290364 [TBL] [Abstract][Full Text] [Related]
38. Regulation of redox status in neuronal SH-SY5Y cells by blueberry (Vaccinium myrtillus L.) juice, cranberry (Vaccinium macrocarpon A.) juice and cyanidin. Cásedas G; González-Burgos E; Smith C; López V; Gómez-Serranillos MP Food Chem Toxicol; 2018 Aug; 118():572-580. PubMed ID: 29860017 [TBL] [Abstract][Full Text] [Related]
39. Advantages of Spray Drying over Freeze Drying: A Comparative Analysis of Michalska-Ciechanowska A; Brzezowska J; Nowicka P; Tkacz K; Turkiewicz IP; Hendrysiak A; Oszmiański J; Andlauer W Molecules; 2024 Jul; 29(15):. PubMed ID: 39124991 [TBL] [Abstract][Full Text] [Related]
40. Effect of ultrasound followed by high pressure processing on prebiotic cranberry juice. Gomes WF; Tiwari BK; Rodriguez Ó; de Brito ES; Fernandes FAN; Rodrigues S Food Chem; 2017 Mar; 218():261-268. PubMed ID: 27719908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]