These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28946413)

  • 1. Acousto-chemical analysis in multi-transducer sonochemical reactors for biodiesel production.
    Hussain MN; Janajreh I
    Ultrason Sonochem; 2018 Jan; 40(Pt A):184-193. PubMed ID: 28946413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of biodiesel from waste cooking oil using sonochemical reactors.
    Hingu SM; Gogate PR; Rathod VK
    Ultrason Sonochem; 2010 Jun; 17(5):827-32. PubMed ID: 20303314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel.
    Thanh le T; Okitsu K; Sadanaga Y; Takenaka N; Maeda Y; Bandow H
    Bioresour Technol; 2010 Jul; 101(14):5394-401. PubMed ID: 20219362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation.
    Crudo D; Bosco V; Cavaglià G; Grillo G; Mantegna S; Cravotto G
    Ultrason Sonochem; 2016 Nov; 33():220-225. PubMed ID: 27245973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review.
    Tudela I; Sáez V; Esclapez MD; Díez-García MI; Bonete P; González-García J
    Ultrason Sonochem; 2014 May; 21(3):909-19. PubMed ID: 24355287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.
    Dang Y; Luo X; Wang F; Li Y
    Waste Manag; 2016 Jun; 52():360-6. PubMed ID: 27055365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility - A review.
    Cako E; Wang Z; Castro-Muñoz R; Rayaroth MP; Boczkaj G
    Ultrason Sonochem; 2022 Aug; 88():106081. PubMed ID: 35777195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation.
    Kelkar MA; Gogate PR; Pandit AB
    Ultrason Sonochem; 2008 Mar; 15(3):188-94. PubMed ID: 17544315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors.
    Kirpalani DM; McQuinn KJ
    Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong.
    Karmee SK; Patria RD; Lin CS
    Int J Mol Sci; 2015 Feb; 16(3):4362-71. PubMed ID: 25809602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on recent biodiesel intensification process through cavitation and microwave reactors: Yield, energy, and economic analysis.
    Bizualem YD; Nurie AG
    Heliyon; 2024 Jan; 10(2):e24643. PubMed ID: 38312610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
    Wei Z; Weavers LK
    Ultrason Sonochem; 2016 Jul; 31():490-8. PubMed ID: 26964976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Tubular Reactor Technologies for the Acceleration of Biodiesel Production.
    Awogbemi O; Kallon DVV
    Bioengineering (Basel); 2022 Jul; 9(8):. PubMed ID: 36004872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic, hydrodynamic and microwave biodiesel synthesis - A comparative study for continuous process.
    Chipurici P; Vlaicu A; Calinescu I; Vinatoru M; Vasilescu M; Ignat ND; Mason TJ
    Ultrason Sonochem; 2019 Oct; 57():38-47. PubMed ID: 31208617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of sonochemical production of hydroxyl radicals from pulsed cylindrically converging ultrasound waves.
    Wong CCY; Raymond JL; Usadi LN; Zong Z; Walton SC; Sedgwick AC; Kwan J
    Ultrason Sonochem; 2023 Oct; 99():106559. PubMed ID: 37643498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK; Lee KT; Mohamed AR
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodiesel production from palm oil using combined mechanical stirred and ultrasonic reactor.
    Choedkiatsakul I; Ngaosuwan K; Cravotto G; Assabumrungrat S
    Ultrason Sonochem; 2014 Jul; 21(4):1585-91. PubMed ID: 24418101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil.
    Ghayal D; Pandit AB; Rathod VK
    Ultrason Sonochem; 2013 Jan; 20(1):322-8. PubMed ID: 22922070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study of sonochemical reactors with different geometry using thermal and chemical probes.
    Nikitenko SI; Le Naour C; Moisy P
    Ultrason Sonochem; 2007 Mar; 14(3):330-6. PubMed ID: 16996294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.