These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28946437)

  • 1. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs.
    Barik AJ; Gogate PR
    Ultrason Sonochem; 2018 Jan; 40(Pt A):383-394. PubMed ID: 28946437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes.
    Thanekar P; Panda M; Gogate PR
    Ultrason Sonochem; 2018 Jan; 40(Pt A):567-576. PubMed ID: 28946459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent.
    Thanekar P; Gogate PR
    Ultrason Sonochem; 2019 May; 53():202-213. PubMed ID: 30686598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone.
    Barik AJ; Gogate PR
    Ultrason Sonochem; 2016 May; 30():70-8. PubMed ID: 26597540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approaches based on hydrodynamic cavitation for treatment of wastewater containing potassium thiocyanate.
    Jawale RH; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():214-223. PubMed ID: 30528210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.
    Rajoriya S; Bargole S; George S; Saharan VK
    J Hazard Mater; 2018 Feb; 344():1109-1115. PubMed ID: 30216970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jan; 34():183-194. PubMed ID: 27773234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.
    Gore MM; Saharan VK; Pinjari DV; Chavan PV; Pandit AB
    Ultrason Sonochem; 2014 May; 21(3):1075-82. PubMed ID: 24360991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution.
    Raut-Jadhav S; Saini D; Sonawane S; Pandit A
    Ultrason Sonochem; 2016 Jan; 28():283-293. PubMed ID: 26384910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.
    Bagal MV; Gogate PR
    Ultrason Sonochem; 2013 Sep; 20(5):1226-35. PubMed ID: 23538121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intensified depolymerization of aqueous polyacrylamide solution using combined processes based on hydrodynamic cavitation, ozone, ultraviolet light and hydrogen peroxide.
    Prajapat AL; Gogate PR
    Ultrason Sonochem; 2016 Jul; 31():371-82. PubMed ID: 26964962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: A case study for real life greywater treatment.
    Mukherjee A; Mullick A; Teja R; Vadthya P; Roy A; Moulik S
    Ultrason Sonochem; 2020 Sep; 66():105116. PubMed ID: 32252011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jul; 37():192-202. PubMed ID: 28427623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of acoustic and hydrodynamic cavitation based hybrid AOPs for COD reduction of commercial effluent from CETP.
    Agarkoti C; Gogate PR; Pandit AB
    J Environ Manage; 2021 Mar; 281():111792. PubMed ID: 33383477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.
    Gogate PR; Patil PN
    Ultrason Sonochem; 2015 Jul; 25():60-9. PubMed ID: 25190647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergetic effect of combination of AOP's (hydrodynamic cavitation and H₂O₂) on the degradation of neonicotinoid class of insecticide.
    Raut-Jadhav S; Saharan VK; Pinjari D; Sonawane S; Saini D; Pandit A
    J Hazard Mater; 2013 Oct; 261():139-47. PubMed ID: 23912079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.
    Bagal MV; Gogate PR
    Ultrason Sonochem; 2014 May; 21(3):1035-43. PubMed ID: 24262760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L.
    Joshi SM; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():375-381. PubMed ID: 30563793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of cyanide containing wastewater using cavitation based approach.
    Jawale RH; Gogate PR; Pandit AB
    Ultrason Sonochem; 2014 Jul; 21(4):1392-9. PubMed ID: 24529614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid reactor based on hydrodynamic cavitation, ozonation, and persulfate oxidation for oxalic acid decomposition during rare-earth extraction processes.
    Choi J; Cui M; Lee Y; Ma J; Kim J; Son Y; Khim J
    Ultrason Sonochem; 2019 Apr; 52():326-335. PubMed ID: 30660376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.