BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28946749)

  • 1. Design and Characterization of a Singly Labeled Fluorescent Smart Probe for In Vitro Detection of miR-21.
    Oladepo SA
    Appl Spectrosc; 2018 Jan; 72(1):79-88. PubMed ID: 28946749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Several Homologous MicroRNAs by a Single Smart Probe System Consisting of Linear Nucleic Acid Blockers.
    Oladepo SA; Yusuf BO
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31615053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple protocol for sequence-specific detection of mixed-base nucleic acids using a smart probe with NABs.
    Oladepo SA; Yusuf BO
    Anal Biochem; 2019 Mar; 568():53-56. PubMed ID: 30610841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-enzymatic detection of miR-21 in cancer cells using a homogeneous mix-and-read smart probe assay.
    Oladepo SA; Nzila A; Aminu A; Sankaran S
    Anal Biochem; 2022 May; 645():114601. PubMed ID: 35182494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive detection of microRNAs based on hairpin fluorescence probe assisted isothermal amplification.
    Ma C; Liu S; Shi C
    Biosens Bioelectron; 2014 Aug; 58():57-60. PubMed ID: 24613970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem-loop probe with universal reporter for sensing unlabeled nucleic acids.
    Tam-Chang SW; Carson TD; Huang L; Publicover NG; Hunter KW
    Anal Biochem; 2007 Jul; 366(2):126-30. PubMed ID: 17509514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular spectrally encoded microgels with double strand probes for absolute and direct miRNA fluorescence detection at high sensitivity.
    Causa F; Aliberti A; Cusano AM; Battista E; Netti PA
    J Am Chem Soc; 2015 Feb; 137(5):1758-61. PubMed ID: 25613454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.
    Liu Y; Zhang J; Tian J; Fan X; Geng H; Cheng Y
    Anal Bioanal Chem; 2017 Jan; 409(1):107-114. PubMed ID: 27815611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-regulated molecular tweezers for sensitive fluorescent detection of microRNA from cancer cells.
    Gong X; Zhou W; Li D; Chai Y; Xiang Y; Yuan R
    Biosens Bioelectron; 2015 Sep; 71():98-102. PubMed ID: 25889350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy.
    Marmé N; Friedrich A; Müller M; Nolte O; Wolfrum J; Hoheisel JD; Sauer M; Knemeyer JP
    Nucleic Acids Res; 2006 Jul; 34(13):e90. PubMed ID: 16870719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent detection of single nucleotide polymorphism utilizing a hairpin DNA containing a nucleotide base analog pyrrolo-deoxycytidine as a fluorescent probe.
    Zhang H; Wang M; Gao Q; Qi H; Zhang C
    Talanta; 2011 May; 84(3):771-6. PubMed ID: 21482281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal-organic framework.
    Qiu GH; Weng ZH; Hu PP; Duan WJ; Xie BP; Sun B; Tang XY; Chen JX
    Talanta; 2018 Apr; 180():396-402. PubMed ID: 29332829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching.
    Zhang Y; Ning X; Mao G; Ji X; He Z
    Anal Bioanal Chem; 2018 May; 410(13):3209-3216. PubMed ID: 29594427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative microRNA detection from precursor-microRNA-transfected hepatocellular carcinoma cells by capillary electrophoresis with dual-color laser-induced fluorescence.
    Yang TH; Ou DL; Hsu C; Huang SH; Chang PL
    Electrophoresis; 2012 Sep; 33(17):2769-76. PubMed ID: 22965724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro RNA Sensing with Green Emitting Silver Nanoclusters.
    Yourston LE; Krasnoslobodtsev AV
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32630693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy.
    Li RD; Wang Q; Yin BC; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():995-1000. PubMed ID: 26547010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence sensing platform based on ruthenium(II) complexes as high 3S (sensitivity, specificity, speed) and "on-off-on" sensors for the miR-185 detection.
    Sun B; Liang Z; Xie BP; Li RT; Li LZ; Jiang ZH; Bai LP; Chen JX
    Talanta; 2018 Mar; 179():658-667. PubMed ID: 29310291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular Microgels with Molecular Beacons at the Interface for Ultrasensitive, Amplification-Free, and SNP-Selective miRNA Fluorescence Detection.
    Caputo TM; Battista E; Netti PA; Causa F
    ACS Appl Mater Interfaces; 2019 May; 11(19):17147-17156. PubMed ID: 31021070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of miRNA using a double-strand displacement biosensor with a self-complementary fluorescent reporter.
    Larkey NE; Almlie CK; Tran V; Egan M; Burrows SM
    Anal Chem; 2014 Feb; 86(3):1853-63. PubMed ID: 24417738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of the mature, but not precursor, RNA using a fluorescent DNA probe.
    Paiboonskuwong K; Kato Y
    Nucleic Acids Symp Ser (Oxf); 2006; (50):327-8. PubMed ID: 17150950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.