These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28946991)

  • 1. Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation.
    Lee S; Chang JH
    Comput Methods Programs Biomed; 2017 Nov; 151():1-13. PubMed ID: 28946991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Bootstrap Aggregation with Support Vector Regression for Small Blood Pressure Measurement.
    Lee S; Ahmad A; Jeon G
    J Med Syst; 2018 Feb; 42(4):63. PubMed ID: 29488105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model.
    Lee S; Rajan S; Jeon G; Chang JH; Dajani HR; Groza VZ
    Comput Biol Med; 2017 Jun; 85():112-124. PubMed ID: 26654485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimated confidence interval from single blood pressure measurement based on algorithmic fusion.
    Lee S; Rajan S; Park CH; Chang JH; Dajani HR; Groza VZ
    Comput Biol Med; 2015 Jul; 62():154-63. PubMed ID: 25935123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian fusion algorithm for improved oscillometric blood pressure estimation.
    Forouzanfar M; Dajani HR; Groza VZ; Bolic M; Rajan S; Batkin I
    Med Eng Phys; 2016 Nov; 38(11):1300-1304. PubMed ID: 27543419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty in Blood Pressure Measurement Estimated Using Ensemble-Based Recursive Methodology.
    Lee S; Dajani HR; Rajan S; Lee G; Groza VZ
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Step Pseudomaximum Amplitude-Based Confidence Interval Estimation for Oscillometric Blood Pressure Measurements.
    Lee S; Jeon G; Kang S
    Biomed Res Int; 2015; 2015():920206. PubMed ID: 26504847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of noninvasive oscillometric and intra-arterial blood pressure measurements in hyperacute stroke.
    Manios E; Vemmos K; Tsivgoulis G; Barlas G; Koroboki E; Spengos K; Zakopoulos N
    Blood Press Monit; 2007 Jun; 12(3):149-56. PubMed ID: 17496464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.
    Raju SMTU; Dipto SA; Hossain MI; Chowdhury MAS; Haque F; Nashrah AT; Nishan A; Khan MMH; Hashem MMA
    Med Biol Eng Comput; 2024 Jul; ():. PubMed ID: 38963467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability.
    Soueidan K; Chen S; Dajani HR; Bolic M; Groza V
    Physiol Meas; 2012 Jun; 33(6):881-99. PubMed ID: 22551623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillometric Blood Pressure Estimation: Past, Present, and Future.
    Forouzanfar M; Dajani HR; Groza VZ; Bolic M; Rajan S; Batkin I
    IEEE Rev Biomed Eng; 2015; 8():44-63. PubMed ID: 25993705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random zero sphygmomanometer versus automatic oscillometric blood pressure monitor; is either the instrument of choice?
    Goonasekera CD; Dillon MJ
    J Hum Hypertens; 1995 Nov; 9(11):885-9. PubMed ID: 8583467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Deep Morpho-Temporal Framework for Oscillometric Blood Pressure Measurement.
    Delfan N; Forouzanfar M
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5293-5301. PubMed ID: 37651480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Measurement of Blood Pressure by Extraction of Characteristic Features from the Cuff Oscillometric Waveform.
    Lim PK; Ng SC; Jassim WA; Redmond SJ; Zilany M; Avolio A; Lim E; Tan MP; Lovell NH
    Sensors (Basel); 2015 Jun; 15(6):14142-61. PubMed ID: 26087370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The agreement between oscillometric and intra-arterial technique for blood pressure monitoring in the lower extremities for infants and toddlers undergoing aortic coarctation repair.
    Peng ZZ; Zhang MZ; Sun Y; Bai J; Gu HB; Liu PP; Li M; Cai MH
    Paediatr Anaesth; 2016 Nov; 26(11):1091-1096. PubMed ID: 27543444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristic Ratio-Independent Arterial Stiffness-Based Blood Pressure Estimation.
    Baktash S; Forouzanfar M; Batkin I; Bolic M; Groza VZ; Ahmad S; Dajani HR
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1263-1270. PubMed ID: 27479981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical analysis of blood pressure measurement errors by oscillometry during surgical operations.
    Tao G; Chen Y; Wen C; Bi M
    Blood Press Monit; 2011 Dec; 16(6):285-90. PubMed ID: 22045016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invasive validation of a novel brachial cuff-based oscillometric device (SphygmoCor XCEL) for measuring central blood pressure.
    Shoji T; Nakagomi A; Okada S; Ohno Y; Kobayashi Y
    J Hypertens; 2017 Jan; 35(1):69-75. PubMed ID: 27763994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement accuracy of a stand-alone oscillometric central blood pressure monitor: a validation report for Microlife WatchBP Office Central.
    Cheng HM; Sung SH; Shih YT; Chuang SY; Yu WC; Chen CH
    Am J Hypertens; 2013 Jan; 26(1):42-50. PubMed ID: 23382326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.