These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28947003)

  • 1. ARCOCT: Automatic detection of lumen border in intravascular OCT images.
    Cheimariotis GA; Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Riga M; Chouvarda I; Antoniadis AP; Doulaverakis C; Tsamboulatidis I; Kompatsiaris I; Giannoglou GD; Maglaveras N
    Comput Methods Programs Biomed; 2017 Nov; 151():21-32. PubMed ID: 28947003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography.
    Tsantis S; Kagadis GC; Katsanos K; Karnabatidis D; Bourantas G; Nikiforidis GC
    Med Phys; 2012 Jan; 39(1):503-13. PubMed ID: 22225321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography.
    Pociask E; Malinowski KP; Ślęzak M; Jaworek-Korjakowska J; Wojakowski W; Roleder T
    J Healthc Eng; 2018; 2018():1414076. PubMed ID: 30792831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic quantitative analysis of in-stent restenosis using FD-OCT in vivo intra-arterial imaging.
    Mandelias K; Tsantis S; Spiliopoulos S; Katsakiori PF; Karnabatidis D; Nikiforidis GC; Kagadis GC
    Med Phys; 2013 Jun; 40(6):063101. PubMed ID: 23718609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of stented coronary arteries from optical coherence tomography images: Feasibility, validation, and repeatability of a segmentation method.
    Chiastra C; Montin E; Bologna M; Migliori S; Aurigemma C; Burzotta F; Celi S; Dubini G; Migliavacca F; Mainardi L
    PLoS One; 2017; 12(6):e0177495. PubMed ID: 28574987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: method and Validation.
    Sihan K; Botha C; Post F; de Winter S; Gonzalo N; Regar E; Serruys PJ; Hamers R; Bruining N
    Catheter Cardiovasc Interv; 2009 Dec; 74(7):1058-65. PubMed ID: 19521990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-I-90: Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography.
    Mandelias K; Tsantis S; Karnabatidis D; Katsakiori P; Mihailidis D; Nikiforidis G; Kagadis GC
    Med Phys; 2012 Jun; 39(6Part5):3645-3646. PubMed ID: 28517652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape prior generation and geodesic active contour interactive iterating algorithm (SPACIAL): fully automatic segmentation for 3D lumen in intravascular optical coherence tomography images.
    Gui L; Ma J; Yang X
    Med Phys; 2021 Nov; 48(11):7099-7111. PubMed ID: 34469593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images.
    Chatzizisis YS; Koutkias VG; Toutouzas K; Giannopoulos A; Chouvarda I; Riga M; Antoniadis AP; Cheimariotis G; Doulaverakis C; Tsampoulatidis I; Bouki K; Kompatsiaris I; Stefanadis C; Maglaveras N; Giannoglou GD
    Int J Cardiol; 2014 Apr; 172(3):568-80. PubMed ID: 24529948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling.
    Bologna M; Migliori S; Montin E; Rampat R; Dubini G; Migliavacca F; Mainardi L; Chiastra C
    PLoS One; 2019; 14(3):e0213603. PubMed ID: 30870477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid automated lumen segmentation of coronary optical coherence tomography images followed by 3D reconstruction of coronary arteries.
    Wu W; Roby M; Banga A; Oguz UM; Gadamidi VK; Hasini Vasa C; Zhao S; Dasari VS; Thota AK; Tanweer S; Lee C; Kassab GS; Chatzizisis YS
    J Med Imaging (Bellingham); 2024 Jan; 11(1):014004. PubMed ID: 38173655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images.
    Migliori S; Chiastra C; Bologna M; Montin E; Dubini G; Aurigemma C; Fedele R; Burzotta F; Mainardi L; Migliavacca F
    Med Eng Phys; 2017 Sep; 47():105-116. PubMed ID: 28711588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of coronary morphology using transmittance-based lumen intensity-enhanced intravascular optical coherence tomography images and applying a localized level-set-based active contour method.
    Joseph S; Adnan A; Adlam D
    J Med Imaging (Bellingham); 2016 Oct; 3(4):044001. PubMed ID: 27981064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection.
    Tanimoto S; Rodriguez-Granillo G; Barlis P; de Winter S; Bruining N; Hamers R; Knappen M; Verheye S; Serruys PW; Regar E
    Catheter Cardiovasc Interv; 2008 Aug; 72(2):228-35. PubMed ID: 18324698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic lumen contour detection in intravascular OCT images using Otsu binarization and intensity curve.
    Kim HM; Lee SH; Lee C; Ha JW; Yoon YR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():178-81. PubMed ID: 25569926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Lumen Segmentation in Intravascular Optical Coherence Tomography Images Using Level Set.
    Cao Y; Cheng K; Qin X; Yin Q; Li J; Zhu R; Zhao W
    Comput Math Methods Med; 2017; 2017():4710305. PubMed ID: 28270857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of the lumen region in intravascular images of the coronary artery.
    Jodas DS; Pereira AS; Tavares JMRS
    Med Image Anal; 2017 Aug; 40():60-79. PubMed ID: 28624754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging.
    Ughi GJ; Verjans J; Fard AM; Wang H; Osborn E; Hara T; Mauskapf A; Jaffer FA; Tearney GJ
    Int J Cardiovasc Imaging; 2015 Feb; 31(2):259-68. PubMed ID: 25341407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bifurcation identifier for IV-OCT using orthogonal least squares and supervised machine learning.
    Macedo MM; Guimarães WV; Galon MZ; Takimura CK; Lemos PA; Gutierrez MA
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():237-48. PubMed ID: 26433615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage.
    Nam HS; Kim CS; Lee JJ; Song JW; Kim JW; Yoo H
    Med Phys; 2016 Apr; 43(4):1662. PubMed ID: 27036565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.