BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28947080)

  • 1. Electromechanical optical mapping.
    Christoph J; Schröder-Schetelig J; Luther S
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):150-169. PubMed ID: 28947080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based motion correction for optical mapping of cardiac electrical activity.
    Khwaounjoo P; Rutherford SL; Svrcek M; LeGrice IJ; Trew ML; Smaill BH
    Ann Biomed Eng; 2015 May; 43(5):1235-46. PubMed ID: 25384833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiparametric optical mapping of the Langendorff-perfused rabbit heart.
    Lou Q; Li W; Efimov IR
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21946767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Optical Measurement of Cardiac Restitution, Contraction, and Fibrillation Dynamics in Beating vs. Blebbistatin-Uncoupled Isolated Rabbit Hearts.
    Kappadan V; Telele S; Uzelac I; Fenton F; Parlitz U; Luther S; Christoph J
    Front Physiol; 2020; 11():464. PubMed ID: 32528304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical mapping of contracting hearts.
    Kappadan V; Sohi A; Parlitz U; Luther S; Uzelac I; Fenton F; Peters NS; Christoph J; Ng FS
    J Physiol; 2023 Apr; 601(8):1353-1370. PubMed ID: 36866700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Mapping of Membrane Potential and Epicardial Deformation in Beating Hearts.
    Zhang H; Iijima K; Huang J; Walcott GP; Rogers JM
    Biophys J; 2016 Jul; 111(2):438-451. PubMed ID: 27463145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts.
    Christoph J; Luther S
    Front Physiol; 2018; 9():1483. PubMed ID: 30450053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts.
    Tai DC; Caldwell BJ; LeGrice IJ; Hooks DA; Pullan AJ; Smaill BH
    Am J Physiol Heart Circ Physiol; 2004 Sep; 287(3):H985-93. PubMed ID: 15130885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous optical mapping of transmembrane potential and wall motion in isolated, perfused whole hearts.
    Bourgeois EB; Bachtel AD; Huang J; Walcott GP; Rogers JM
    J Biomed Opt; 2011 Sep; 16(9):096020. PubMed ID: 21950934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-Sensitive Fluorescence of Indocyanine Green in the Heart.
    Martišienė I; Mačianskienė R; Treinys R; Navalinskas A; Almanaitytė M; Karčiauskas D; Kučinskas A; Grigalevičiūtė R; Zigmantaitė V; Benetis R; Jurevičius J
    Biophys J; 2016 Feb; 110(3):723-732. PubMed ID: 26840736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation.
    Bachtel AD; Gray RA; Stohlman JM; Bourgeois EB; Pollard AE; Rogers JM
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2120-6. PubMed ID: 21536528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Imaging of Cardiac Action Potential.
    Pertsov A; Walton RD; Bernus O
    Adv Exp Med Biol; 2015; 859():299-311. PubMed ID: 26238058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Optical Mapping of Contracting Cardiac Tissues With GPU-Accelerated Numerical Motion Tracking.
    Lebert J; Ravi N; Kensah G; Christoph J
    Front Cardiovasc Med; 2022; 9():787627. PubMed ID: 35686036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical mapping of cardiac electromechanics in beating in vivo hearts.
    Zhang H; Patton HN; Wood GA; Yan P; Loew LM; Acker CD; Walcott GP; Rogers JM
    Biophys J; 2023 Nov; 122(21):4207-4219. PubMed ID: 37775969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of motion artifact in cardiac optical mapping using image registration.
    Rohde GK; Dawant BM; Lin SF
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):338-41. PubMed ID: 15709673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical mapping of action potentials and calcium transients in the mouse heart.
    Lang D; Sulkin M; Lou Q; Efimov IR
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21946907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis.
    Asfour H; Swift LM; Sarvazyan N; Doroslovački M; Kay MW
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2083-93. PubMed ID: 21511560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution optical mapping of gastric slow wave propagation.
    Zhang H; Yu H; Walcott GP; Paskaranandavadivel N; Cheng LK; O'Grady G; Rogers JM
    Neurogastroenterol Motil; 2019 Jan; 31(1):e13449. PubMed ID: 30129082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research.
    Swift LM; Kay MW; Ripplinger CM; Posnack NG
    Am J Physiol Heart Circ Physiol; 2021 Dec; 321(6):H1005-H1013. PubMed ID: 34623183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preprocessing of fluoresced transmembrane potential signals for cardiac optical mapping.
    Asfour H; Swift L; Sarvazyan N; Doroslovački M; Kay M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():227-30. PubMed ID: 22254291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.