BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

706 related articles for article (PubMed ID: 28947253)

  • 1. Metabolic control by sirtuins and other enzymes that sense NAD
    Anderson KA; Madsen AS; Olsen CA; Hirschey MD
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):991-998. PubMed ID: 28947253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cofactor engineering to regulate NAD
    Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M
    Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target.
    Griffiths HBS; Williams C; King SJ; Allison SJ
    Biochem Soc Trans; 2020 Jun; 48(3):733-744. PubMed ID: 32573651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assays for NAD
    Schultz MB; Lu Y; Braidy N; Sinclair DA
    Methods Mol Biol; 2018; 1813():77-90. PubMed ID: 30097862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory Effects of NAD
    Zhang N; Sauve AA
    Prog Mol Biol Transl Sci; 2018; 154():71-104. PubMed ID: 29413178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation.
    Mishra S; Welch N; Karthikeyan M; Bellar A; Musich R; Singh SS; Zhang D; Sekar J; Attaway AH; Chelluboyina AK; Lorkowski SW; Roychowdhury S; Li L; Willard B; Smith JD; Hoppel CL; Vachharajani V; Kumar A; Dasarathy S
    Aging Cell; 2023 Jul; 22(7):e13852. PubMed ID: 37101412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular Compartmentation and the Redox/Nonredox Functions of NAD
    Kulkarni CA; Brookes PS
    Antioxid Redox Signal; 2019 Sep; 31(9):623-642. PubMed ID: 30784294
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of NAD
    Hershberger KA; Martin AS; Hirschey MD
    Nat Rev Nephrol; 2017 Apr; 13(4):213-225. PubMed ID: 28163307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD
    Lin Q; Zuo W; Liu Y; Wu K; Liu Q
    Clin Chim Acta; 2021 Apr; 515():104-110. PubMed ID: 33485900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins).
    Lawson M; Uciechowska U; Schemies J; Rumpf T; Jung M; Sippl W
    Biochim Biophys Acta; 2010; 1799(10-12):726-39. PubMed ID: 20601279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD⁺ metabolism: a therapeutic target for age-related metabolic disease.
    Mouchiroud L; Houtkooper RH; Auwerx J
    Crit Rev Biochem Mol Biol; 2013; 48(4):397-408. PubMed ID: 23742622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential role of sirtuins in livestock production.
    Ghinis-Hozumi Y; Antaramian A; Villarroya F; Piña E; Mora O
    Animal; 2013 Jan; 7(1):101-8. PubMed ID: 23031219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation.
    Schmidt MT; Smith BC; Jackson MD; Denu JM
    J Biol Chem; 2004 Sep; 279(38):40122-9. PubMed ID: 15269219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free [NADH]/[NAD(+)] regulates sirtuin expression.
    Gambini J; Gomez-Cabrera MC; Borras C; Valles SL; Lopez-Grueso R; Martinez-Bello VE; Herranz D; Pallardo FV; Tresguerres JA; Serrano M; Viña J
    Arch Biochem Biophys; 2011 Aug; 512(1):24-9. PubMed ID: 21575591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NAD ratio redox paradox: why does too much reductive power cause oxidative stress?
    Teodoro JS; Rolo AP; Palmeira CM
    Toxicol Mech Methods; 2013 Jun; 23(5):297-302. PubMed ID: 23256455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.