These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 28947535)
1. Dysregulated PDGFRα signaling alters coronal suture morphogenesis and leads to craniosynostosis through endochondral ossification. He F; Soriano P Development; 2017 Nov; 144(21):4026-4036. PubMed ID: 28947535 [TBL] [Abstract][Full Text] [Related]
2. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Behr B; Longaker MT; Quarto N Dev Biol; 2010 Aug; 344(2):922-40. PubMed ID: 20547147 [TBL] [Abstract][Full Text] [Related]
3. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Ting MC; Wu NL; Roybal PG; Sun J; Liu L; Yen Y; Maxson RE Development; 2009 Mar; 136(5):855-64. PubMed ID: 19201948 [TBL] [Abstract][Full Text] [Related]
4. The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis. Ishii M; Sun J; Ting MC; Maxson RE Curr Top Dev Biol; 2015; 115():131-56. PubMed ID: 26589924 [TBL] [Abstract][Full Text] [Related]
5. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Holmes G; Basilico C Dev Biol; 2012 Aug; 368(2):283-93. PubMed ID: 22664175 [TBL] [Abstract][Full Text] [Related]
6. Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Merrill AE; Bochukova EG; Brugger SM; Ishii M; Pilz DT; Wall SA; Lyons KM; Wilkie AO; Maxson RE Hum Mol Genet; 2006 Apr; 15(8):1319-28. PubMed ID: 16540516 [TBL] [Abstract][Full Text] [Related]
7. Increased FGF8 signaling promotes chondrogenic rather than osteogenic development in the embryonic skull. Schmidt L; Taiyab A; Melvin VS; Jones KL; Williams T Dis Model Mech; 2018 Jun; 11(6):. PubMed ID: 29752281 [TBL] [Abstract][Full Text] [Related]
8. Absence of endochondral ossification and craniosynostosis in posterior frontal cranial sutures of Axin2(-/-) mice. Behr B; Longaker MT; Quarto N PLoS One; 2013; 8(8):e70240. PubMed ID: 23936395 [TBL] [Abstract][Full Text] [Related]
9. Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Moenning A; Jäger R; Egert A; Kress W; Wardelmann E; Schorle H Mol Cell Biol; 2009 Feb; 29(3):881-91. PubMed ID: 19047372 [TBL] [Abstract][Full Text] [Related]
10. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Yu HM; Jerchow B; Sheu TJ; Liu B; Costantini F; Puzas JE; Birchmeier W; Hsu W Development; 2005 Apr; 132(8):1995-2005. PubMed ID: 15790973 [TBL] [Abstract][Full Text] [Related]
11. Srsf3 mediates alternative RNA splicing downstream of PDGFRα signaling in the facial mesenchyme. Dennison BJC; Larson ED; Fu R; Mo J; Fantauzzo KA Development; 2021 Jul; 148(14):. PubMed ID: 34184034 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanisms in calvarial bone and suture development, and their relation to craniosynostosis. Rice DP; Rice R; Thesleff I Eur J Orthod; 2003 Apr; 25(2):139-48. PubMed ID: 12737212 [TBL] [Abstract][Full Text] [Related]
13. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients. Song D; Zhang F; Reid RR; Ye J; Wei Q; Liao J; Zou Y; Fan J; Ma C; Hu X; Qu X; Chen L; Li L; Yu Y; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Lei J; Li Y; Zhang W; Wang J; Lee MJ; Wolf JM; Huang D; He TC J Cell Mol Med; 2017 Nov; 21(11):2782-2795. PubMed ID: 28470873 [TBL] [Abstract][Full Text] [Related]
14. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis. Coussens AK; Wilkinson CR; Hughes IP; Morris CP; van Daal A; Anderson PJ; Powell BC BMC Genomics; 2007 Dec; 8():458. PubMed ID: 18076769 [TBL] [Abstract][Full Text] [Related]
15. PDGFR-alpha signaling is critical for tooth cusp and palate morphogenesis. Xu X; Bringas P; Soriano P; Chai Y Dev Dyn; 2005 Jan; 232(1):75-84. PubMed ID: 15543606 [TBL] [Abstract][Full Text] [Related]
16. Embryonic requirements for Tcf12 in the development of the mouse coronal suture. Ting MC; Farmer DT; Teng CS; He J; Chai Y; Crump JG; Maxson RE Development; 2022 Jan; 149(1):. PubMed ID: 34878091 [TBL] [Abstract][Full Text] [Related]
17. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis). De Pollack C; Renier D; Hott M; Marie PJ J Bone Miner Res; 1996 Mar; 11(3):401-7. PubMed ID: 8852951 [TBL] [Abstract][Full Text] [Related]
18. Disruption of PDGFRalpha-initiated PI3K activation and migration of somite derivatives leads to spina bifida. Pickett EA; Olsen GS; Tallquist MD Development; 2008 Feb; 135(3):589-98. PubMed ID: 18192285 [TBL] [Abstract][Full Text] [Related]
19. Rapamycin rescues BMP mediated midline craniosynostosis phenotype through reduction of mTOR signaling in a mouse model. Kramer K; Yang J; Swanson WB; Hayano S; Toda M; Pan H; Kim JK; Krebsbach PH; Mishina Y Genesis; 2018 Jun; 56(6-7):e23220. PubMed ID: 30134066 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of Lee KKL; Peskett E; Quinn CM; Aiello R; Adeeva L; Moulding DA; Stanier P; Pauws E Dis Model Mech; 2018 Nov; 11(11):. PubMed ID: 30266836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]