These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28947751)

  • 21. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance.
    Du C; Jin S; Fang Y; Li J; Hu S; Yang T; Zhang Y; Huang J; Sha G; Wang Y; Shang Z; Zhang X; Sun B; Xin S; Shen T
    Nat Commun; 2018 Dec; 9(1):5389. PubMed ID: 30568181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation.
    Zhang L; Lu C; Tieu K; Zhao X; Pei L
    Nanoscale; 2015 Apr; 7(16):7224-33. PubMed ID: 25811909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and segregation of dopant-defect complexes at grain boundaries in nanocrystalline doped ceria.
    Dholabhai PP; Aguiar JA; Wu L; Holesinger TG; Aoki T; Castro RH; Uberuaga BP
    Phys Chem Chem Phys; 2015 Jun; 17(23):15375-85. PubMed ID: 26000664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries.
    Uberuaga BP; Bai XM
    J Phys Condens Matter; 2011 Nov; 23(43):435004. PubMed ID: 21960062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metastable grain boundaries: the roles of structural and chemical disorders in their energetics, non-equilibrium kinetic evolution, and mechanical behaviors.
    He M; Wang Y; Fan Y
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38740049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Softening due to disordered grain boundaries in nanocrystalline Co.
    Yuasa M; Hakamada M; Nakano H; Mabuchi M; Chino Y
    J Phys Condens Matter; 2013 Aug; 25(34):345702. PubMed ID: 23896760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures.
    Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y
    Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deformation Behavior of Nanocrystalline Body-Centered Cubic Iron with Segregated, Foreign Interstitial: A Molecular Dynamics Study.
    AlMotasem AT; Posselt M; Polcar T
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency.
    Uberuaga BP; Vernon LJ; Martinez E; Voter AF
    Sci Rep; 2015 Mar; 5():9095. PubMed ID: 25766999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical properties for irradiated face-centred cubic nanocrystalline metals.
    Xiao XZ; Song DK; Chu HJ; Xue JM; Duan HL
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140832. PubMed ID: 27547091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determining the Volume Expansion at Grain Boundaries Using Extended Energy-Loss Fine Structure Analysis.
    Nandi P; Howe JM
    Microsc Microanal; 2019 Oct; 25(5):1130-1138. PubMed ID: 31407643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implications of Microstructure in Helium-Implanted Nanocrystalline Metals.
    Nathaniel JE; El-Atwani O; Huang S; Marian J; Leff AC; Baldwin JK; Hattar K; Taheri ML
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Evolution of Structural Defects under Irradiation in W by Molecular Dynamics Simulation.
    Zheng R; Xuan W; Xie J; Chen S; Yang L; Zhang L
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Multiple Roles of Small-Angle Tilt Grain Boundaries in Annihilating Radiation Damage in SiC.
    Jiang H; Wang X; Szlufarska I
    Sci Rep; 2017 Feb; 7():42358. PubMed ID: 28181488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of vacancy creation and annihilation on grain boundary motion.
    McFadden GB; Boettinger WJ; Mishin Y
    Acta Mater; 2020; 185():. PubMed ID: 33281492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomistic dynamics of sulfur-deficient high-symmetry grain boundaries in molybdenum disulfide.
    Hong J; Wang Y; Wang A; Lv D; Jin C; Xu Z; Probert MIJ; Yuan J; Zhang Z
    Nanoscale; 2017 Jul; 9(29):10312-10320. PubMed ID: 28702611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonrandom point defect configurations and driving force transitions for grain boundary segregation in trivalent cation doped ZrO₂.
    Yokoi T; Yoshiya M; Yasuda H
    Langmuir; 2014 Dec; 30(47):14179-88. PubMed ID: 25378196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing the Strength of Graphene by a Denser Grain Boundary.
    Xu J; Yuan G; Zhu Q; Wang J; Tang S; Gao L
    ACS Nano; 2018 May; 12(5):4529-4535. PubMed ID: 29659251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Density Functional Theory plus Hubbard U Study of the Segregation of Pt to the CeO
    Zhou G; Li P; Ma Q; Tian Z; Liu Y
    Nano Lett; 2018 Mar; 18(3):1668-1677. PubMed ID: 29446958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.