These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28947751)

  • 61. Remarkable Role of Grain Boundaries in the Thermal Transport Properties of Phosphorene.
    Liu X; Gao J; Zhang G; Zhao J; Zhang YW
    ACS Omega; 2020 Jul; 5(28):17416-17422. PubMed ID: 32715226
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Grain Boundary Segregation in Pd-Cu-Ag Alloys for High Permeability Hydrogen Separation Membranes.
    Løvvik OM; Zhao D; Li Y; Bredesen R; Peters T
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30213115
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Effect of Vacancies on Grain Boundary Segregation in Ferromagnetic
    Mazalová M; Všianská M; Pavlů J; Šob M
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32268587
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Thermal and Radiation Stability in Nanocrystalline Cu.
    Thomas M; Salvador H; Clark T; Lang E; Hattar K; Mathaudhu S
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049305
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten.
    Cunningham WS; Gentile JM; El-Atwani O; Taylor CN; Efe M; Maloy SA; Trelewicz JR
    Sci Rep; 2018 Feb; 8(1):2897. PubMed ID: 29440652
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum.
    Babu PN; Pal S
    J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt-Au.
    Barr CM; Foiles SM; Alkayyali M; Mahmood Y; Price PM; Adams DP; Boyce BL; Abdeljawad F; Hattar K
    Nanoscale; 2021 Feb; 13(6):3552-3563. PubMed ID: 33491721
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films.
    Yan Y; Jiang CS; Noufi R; Wei SH; Moutinho HR; Al-Jassim MM
    Phys Rev Lett; 2007 Dec; 99(23):235504. PubMed ID: 18233382
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of the segregation of paramagnetic impurities at grain boundaries in nanostructured ZnO films.
    Ghica D; Stefan M; Ghica C; Stan GE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14231-8. PubMed ID: 25090453
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation.
    Long R; Liu J; Prezhdo OV
    J Am Chem Soc; 2016 Mar; 138(11):3884-90. PubMed ID: 26930494
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks.
    Pineau A
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Atomistic and machine learning studies of solute segregation in metastable grain boundaries.
    Mahmood Y; Alghalayini M; Martinez E; Paredis CJJ; Abdeljawad F
    Sci Rep; 2022 Apr; 12(1):6673. PubMed ID: 35461319
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Observations of grain-boundary phase transformations in an elemental metal.
    Meiners T; Frolov T; Rudd RE; Dehm G; Liebscher CH
    Nature; 2020 Mar; 579(7799):375-378. PubMed ID: 32188953
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In situ study of defect migration kinetics in nanoporous Ag with enhanced radiation tolerance.
    Sun C; Bufford D; Chen Y; Kirk MA; Wang YQ; Li M; Wang H; Maloy SA; Zhang X
    Sci Rep; 2014 Jan; 4():3737. PubMed ID: 24435181
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Growth and Grain Boundaries in 2D Materials.
    Yao W; Wu B; Liu Y
    ACS Nano; 2020 Aug; 14(8):9320-9346. PubMed ID: 32701265
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular Dynamics Simulations of Displacement Cascades in BCC-Fe: Effects of Dislocation, Dislocation Loop and Grain Boundary.
    Lin P; Cui S; Nie J; He L; Cui W
    Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068241
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In Situ High Temperature Atomic Level Studies of Large Closed Grain Boundary Loops in Graphene.
    Gong C; He K; Chen Q; Robertson AW; Warner JH
    ACS Nano; 2016 Oct; 10(10):9165-9173. PubMed ID: 27661200
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Size-Dependent Solute Segregation at Symmetric Tilt Grain Boundaries in
    Zapolsky H; Vaugeois A; Patte R; Demange G
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361394
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effect of space-charge formation on the grain-boundary energy of an ionic solid.
    De Souza RA; Dickey EC
    Philos Trans A Math Phys Eng Sci; 2019 Aug; 377(2152):20180430. PubMed ID: 31280710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.