These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28947771)

  • 1. Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys.
    Vaidya M; Pradeep KG; Murty BS; Wilde G; Divinski SV
    Sci Rep; 2017 Sep; 7(1):12293. PubMed ID: 28947771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain boundary decohesion by nanoclustering Ni and Cr separately in CrMnFeCoNi high-entropy alloys.
    Ming K; Li L; Li Z; Bi X; Wang J
    Sci Adv; 2019 Dec; 5(12):eaay0639. PubMed ID: 31840073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Development of Stable Nanocrystalline High-Entropy Alloy: Coupling Self-Stabilization and Solute Grain Boundary Segregation Effects.
    Adaan-Nyiak MA; Alam I; Jossou E; Hwang S; Kisslinger K; Gill SK; Tiamiyu AA
    Small; 2024 Jul; 20(27):e2309631. PubMed ID: 38312106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile deformation behavior of twist grain boundaries in CoCrFeMnNi high entropy alloy bicrystals.
    Lee H; Shabani M; Pataky GJ; Abdeljawad F
    Sci Rep; 2021 Jan; 11(1):428. PubMed ID: 33431909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irradiation damage in multicomponent equimolar alloys and high entropy alloys (HEAs).
    Nagase T; Rack PD; Egami T
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i22. PubMed ID: 25359817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grain Boundary Wetting by a Second Solid Phase in the High Entropy Alloys: A Review.
    Straumal BB; Korneva A; Lopez GA; Kuzmin A; Rabkin E; Gerstein G; Straumal AB; Gornakova AS
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.
    Yan S; H Qin Q; Zhong Z
    Nanotechnology; 2020 Sep; 31(38):385705. PubMed ID: 32503016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven prediction of grain boundary segregation and disordering in high-entropy alloys in a 5D space.
    Hu C; Luo J
    Mater Horiz; 2022 Mar; 9(3):1023-1035. PubMed ID: 35015018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation mechanism in Al
    Liu C; Yang Y; Xia Z
    RSC Adv; 2020 Jul; 10(46):27688-27696. PubMed ID: 35516964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Element Effects on High-Entropy Alloy Vacancy and Heterogeneous Lattice Distortion Subjected to Quasi-equilibrium Heating.
    Huang EW; Chou HS; Tu KN; Hung WS; Lam TN; Tsai CW; Chiang CY; Lin BH; Yeh AC; Chang SH; Chang YJ; Yang JJ; Li XY; Ku CS; An K; Chang YW; Jao YL
    Sci Rep; 2019 Oct; 9(1):14788. PubMed ID: 31616021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Prediction of Strengthening in Nanocrystalline Cu with Multi-Element Grain Boundary Segregation Decoration.
    Guo F; Li C; Fu T; Peng X
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of one-step recrystallization on the grain boundary evolution of CoCrFeMnNi high entropy alloy and its subsystems.
    Chen BR; Yeh AC; Yeh JW
    Sci Rep; 2016 Feb; 6():22306. PubMed ID: 26923713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic ways of tailoring phases in high entropy alloys.
    He F; Wang Z; Li Y; Wu Q; Li J; Wang J; Liu CT
    Sci Rep; 2016 Sep; 6():34628. PubMed ID: 27687976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Evolution and Transitions of Mechanisms in Creep Deformation of Nanocrystalline FeCrAl Alloys.
    Yao H; Ye T; Wang P; Wu J; Zhang J; Chen P
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile creep behavior and mechanism of CoCrFeMnNi high entropy alloy.
    Song C; Li G; Li G; Zhang G; Cai B
    Micron; 2021 Nov; 150():103144. PubMed ID: 34534922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of high entropy alloys (HEAs): Current trends.
    V B; M AX
    Heliyon; 2024 Apr; 10(7):e26464. PubMed ID: 38689948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data related to the growth of σ-phase precipitates in CrMnFeCoNi high-entropy alloys: Temporal evolutions of precipitate dimensions and concentration profiles at interfaces.
    Laplanche G
    Data Brief; 2020 Dec; 33():106449. PubMed ID: 33163597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Grain Size on Carburization Characteristics of the High-Entropy Equiatomic CoCrFeMnNi Alloy.
    Nam H; Kim J; Kim N; Song S; Na Y; Kim JH; Kang N
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vacancy creation and annihilation on grain boundary motion.
    McFadden GB; Boettinger WJ; Mishin Y
    Acta Mater; 2020; 185():. PubMed ID: 33281492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study.
    Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.