These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28947811)

  • 1. Enhanced droplet collision rates and impact velocities in turbulent flows: The effect of poly-dispersity and transient phases.
    James M; Ray SS
    Sci Rep; 2017 Sep; 7(1):12231. PubMed ID: 28947811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rate of formation of caustics in heavy particles advected by turbulence.
    Bhatnagar A; Pandey V; Perlekar P; Mitra D
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210086. PubMed ID: 35094553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding droplet collisions through a model flow: Insights from a Burgers vortex.
    Agasthya L; Picardo JR; Ravichandran S; Govindarajan R; Ray SS
    Phys Rev E; 2019 Jun; 99(6-1):063107. PubMed ID: 31330678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferred location of droplet collisions in turbulent flows.
    Perrin VE; Jonker HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033005. PubMed ID: 24730935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple collisions in turbulent flows.
    Vosskuhle M; Lévêque E; Wilkinson M; Pumir A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063008. PubMed ID: 24483558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial particle collisions in turbulent synthetic flows: quantifying the sling effect.
    Ducasse L; Pumir A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066312. PubMed ID: 20365272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of geometrical confinement on coalescence efficiency of droplet pairs in shear flow.
    De Bruyn P; Cardinaels R; Moldenaers P
    J Colloid Interface Sci; 2013 Nov; 409():183-92. PubMed ID: 23988082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are turbulence effects on droplet collision-coalescence a key to understanding observed rain formation in clouds?
    Chandrakar KK; Morrison H; Grabowski WW; Lawson RP
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2319664121. PubMed ID: 38917003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere.
    Elperin T; Kleeorin N; Krasovitov B; Kulmala M; Liberman M; Rogachevskii I; Zilitinkevich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013012. PubMed ID: 26274274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravity-driven enhancement of heavy particle clustering in turbulent flow.
    Bec J; Homann H; Ray SS
    Phys Rev Lett; 2014 May; 112(18):184501. PubMed ID: 24856699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collisions and coalescence in droplet streams for the production of freeze-dried powders.
    Süverkrüp R; Eggerstedt S; Wanning S; Kuschel M; Sommerfeld M; Lamprecht A
    Colloids Surf B Biointerfaces; 2016 May; 141():443-449. PubMed ID: 26895506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical model for collisions and recollisions of inertial particles in mixing flows.
    Gustavsson K; Mehlig B
    Eur Phys J E Soft Matter; 2016 May; 39(5):55. PubMed ID: 27225619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collisions of Self-Bound Quantum Droplets.
    Ferioli G; Semeghini G; Masi L; Giusti G; Modugno G; Inguscio M; Gallemí A; Recati A; Fattori M
    Phys Rev Lett; 2019 Mar; 122(9):090401. PubMed ID: 30932536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colliding-Droplet Microreactor: Rapid On-Demand Inertial Mixing and Metal-Catalyzed Aqueous Phase Oxidation Processes.
    Davis RD; Jacobs MI; Houle FA; Wilson KR
    Anal Chem; 2017 Nov; 89(22):12494-12501. PubMed ID: 29083875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering instability of the spatial distribution of inertial particles in turbulent flows.
    Elperin T; Kleeorin N; L'vov VS; Rogachevskii I; Sokoloff D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036302. PubMed ID: 12366248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Numerical Investigation on the Collision Behavior of Unequal-Sized Micro-Nano Droplets.
    Qian L; Liu J; Cong H; Zhou F; Bao F
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.
    Yi N; Huang B; Dong L; Quan X; Hong F; Tao P; Song C; Shang W; Deng T
    Sci Rep; 2014 Mar; 4():4303. PubMed ID: 24603362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantized vortex nucleation in collisions of superfluid nanoscopic helium droplets at zero temperature.
    García-Alfonso E; Ancilotto F; Barranco M; Pi M; Halberstadt N
    J Chem Phys; 2023 Aug; 159(7):. PubMed ID: 37602801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of rain initiation by cloud turbulence.
    Falkovich G; Fouxon A; Stepanov MG
    Nature; 2002 Sep; 419(6903):151-4. PubMed ID: 12226661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space-time correlations of fluctuating velocities in turbulent shear flows.
    Zhao X; He GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046316. PubMed ID: 19518342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.