These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28948229)

  • 1. Atomic-scale visualization of surface-assisted orbital order.
    Kim H; Yoshida Y; Lee CC; Chang TR; Jeng HT; Lin H; Haga Y; Fisk Z; Hasegawa Y
    Sci Adv; 2017 Sep; 3(9):eaao0362. PubMed ID: 28948229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic imaging scanning tunneling microscopy as a probe of orbital structures and ordering.
    Lee WC; Wu C
    Phys Rev Lett; 2009 Oct; 103(17):176101. PubMed ID: 19905771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Space Imaging of Orbital Selectivity on SrTiO
    Song C; Li X; Jiang Y; Wang X; Yao J; Meng S; Zhang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37279-37284. PubMed ID: 31529959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-space imaging of an orbital Kondo resonance on the Cr(001) surface.
    Kolesnychenko OY; de Kort R; Katsnelson MI; Lichtenstein AI; van Kempen H
    Nature; 2002 Jan; 415(6871):507-9. PubMed ID: 11823854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Scale Visualization of Quantum Interference on a Weyl Semimetal Surface by Scanning Tunneling Microscopy.
    Zheng H; Xu SY; Bian G; Guo C; Chang G; Sanchez DS; Belopolski I; Lee CC; Huang SM; Zhang X; Sankar R; Alidoust N; Chang TR; Wu F; Neupert T; Chou F; Jeng HT; Yao N; Bansil A; Jia S; Lin H; Hasan MZ
    ACS Nano; 2016 Jan; 10(1):1378-85. PubMed ID: 26743693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orbital physics in transition-metal oxides.
    Tokura Y; Nagaosa N
    Science; 2000 Apr; 288(5465):462-8. PubMed ID: 10775098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically induced Jahn-Teller ordering on manganite surfaces.
    Gai Z; Lin W; Burton JD; Fuchigami K; Snijders PC; Ward TZ; Tsymbal EY; Shen J; Jesse S; Kalinin SV; Baddorf AP
    Nat Commun; 2014 Jul; 5():4528. PubMed ID: 25058540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Kondo lattices to Kondo superlattices.
    Shimozawa M; Goh SK; Shibauchi T; Matsuda Y
    Rep Prog Phys; 2016 Jul; 79(7):074503. PubMed ID: 27275757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nematic state of pnictides stabilized by interplay between spin, orbital, and lattice degrees of freedom.
    Liang S; Moreo A; Dagotto E
    Phys Rev Lett; 2013 Jul; 111(4):047004. PubMed ID: 23931398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-porphyrin orbital interactions in highly saddled low-spin iron(III) porphyrin complexes.
    Ohgo Y; Hoshino A; Okamura T; Uekusa H; Hashizume D; Ikezaki A; Nakamura M
    Inorg Chem; 2007 Oct; 46(20):8193-207. PubMed ID: 17725347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orbital Selectivity in Scanning Tunneling Microscopy: Distance-Dependent Tunneling Process Observed in Iron Nitride.
    Takahashi Y; Miyamachi T; Ienaga K; Kawamura N; Ernst A; Komori F
    Phys Rev Lett; 2016 Feb; 116(5):056802. PubMed ID: 26894727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benzoannelation stabilizes the d(xy)1 state of low-spin iron(III) porphyrinates.
    Ikeue T; Handa M; Chamberlin A; Ghosh A; Ongayi O; Vicente MG; Ikezaki A; Nakamura M
    Inorg Chem; 2011 Apr; 50(8):3567-81. PubMed ID: 21410230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of mononuclear nickel(I), nickel(0), copper(i), and cobalt(I) dioxygen complexes: new insight into differences and similarities in geometry and bonding nature.
    Chen Y; Sakaki S
    Inorg Chem; 2013 Nov; 52(22):13146-59. PubMed ID: 24195520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of d-Orbital Populations in a Cobalt(II) Single-Molecule Magnet Using Single-Crystal X-ray Diffraction.
    Craven M; Nygaard MH; Zadrozny JM; Long JR; Overgaard J
    Inorg Chem; 2018 Jun; 57(12):6913-6920. PubMed ID: 29862809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of temperature-induced crossover to an orbital-selective Mott phase in A(x)Fe(2-y)Se2 (A=K, Rb) superconductors.
    Yi M; Lu DH; Yu R; Riggs SC; Chu JH; Lv B; Liu ZK; Lu M; Cui YT; Hashimoto M; Mo SK; Hussain Z; Chu CW; Fisher IR; Si Q; Shen ZX
    Phys Rev Lett; 2013 Feb; 110(6):067003. PubMed ID: 23432294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites.
    Meyers D; Middey S; Cheng JG; Mukherjee S; Gray BA; Cao Y; Zhou JS; Goodenough JB; Choi Y; Haskel D; Freeland JW; Saha-Dasgupta T; Chakhalian J
    Nat Commun; 2014 Dec; 5():5818. PubMed ID: 25517129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of hidden orbital order and superconductivity in CeCoIn
    Chen W; Neerup Breiø C; Massee F; Allan MP; Petrovic C; Davis JCS; Hirschfeld PJ; Andersen BM; Kreisel A
    Nat Commun; 2023 May; 14(1):2984. PubMed ID: 37225697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
    Steglich F; Wirth S
    Rep Prog Phys; 2016 Aug; 79(8):084502. PubMed ID: 27376190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point-contact spectroscopy of heavy fermion superconductors Ce
    Yin L; Che L; Le T; Chen Y; Zhang Y; Lee H; Gnida D; Thompson JD; Kaczorowski D; Lu X
    J Phys Condens Matter; 2021 Apr; 33(20):. PubMed ID: 33690181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of the new Ni-based superconductor KNi2Se2.
    Lu F; Zhao JZ; Wang WH
    J Phys Condens Matter; 2012 Dec; 24(49):495501. PubMed ID: 23138029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.